diff --git a/econml/panel/utilities.py b/econml/panel/utilities.py index 5d1202285..52ce1109f 100644 --- a/econml/panel/utilities.py +++ b/econml/panel/utilities.py @@ -1,5 +1,15 @@ import numpy as np +try: + import matplotlib + import matplotlib.pyplot as plt +except ImportError as exn: + from .utilities import MissingModule + + # make any access to matplotlib or plt throw an exception + matplotlib = plt = MissingModule("matplotlib is no longer a dependency of the main econml package; " + "install econml[plt] or econml[all] to require it, or install matplotlib " + "separately, to use the tree interpreters", exn) def long(x): @@ -42,3 +52,46 @@ def wide(x): """ n_units = x.shape[0] return x.reshape(n_units, -1) + + +# Auxiliary function for adding xticks and vertical lines when plotting results +# for dynamic dml vs ground truth parameters. +def add_vlines(n_periods, n_treatments, hetero_inds): + locs, labels = plt.xticks([], []) + locs += [- .501 + (len(hetero_inds) + 1) / 2] + labels += ["\n\n$\\tau_{{{}}}$".format(0)] + locs += [qx for qx in np.arange(len(hetero_inds) + 1)] + labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] + for q in np.arange(1, n_treatments): + plt.axvline(x=q * (len(hetero_inds) + 1) - .5, + linestyle='--', color='red', alpha=.2) + locs += [q * (len(hetero_inds) + 1) - .501 + (len(hetero_inds) + 1) / 2] + labels += ["\n\n$\\tau_{{{}}}$".format(q)] + locs += [(q * (len(hetero_inds) + 1) + qx) + for qx in np.arange(len(hetero_inds) + 1)] + labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] + locs += [- .501 + (len(hetero_inds) + 1) * n_treatments / 2] + labels += ["\n\n\n\n$\\theta_{{{}}}$".format(0)] + for t in np.arange(1, n_periods): + plt.axvline(x=t * (len(hetero_inds) + 1) * + n_treatments - .5, linestyle='-', alpha=.6) + locs += [t * (len(hetero_inds) + 1) * n_treatments - .501 + + (len(hetero_inds) + 1) * n_treatments / 2] + labels += ["\n\n\n\n$\\theta_{{{}}}$".format(t)] + locs += [t * (len(hetero_inds) + 1) * + n_treatments - .501 + (len(hetero_inds) + 1) / 2] + labels += ["\n\n$\\tau_{{{}}}$".format(0)] + locs += [t * (len(hetero_inds) + 1) * n_treatments + + qx for qx in np.arange(len(hetero_inds) + 1)] + labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] + for q in np.arange(1, n_treatments): + plt.axvline(x=t * (len(hetero_inds) + 1) * n_treatments + q * (len(hetero_inds) + 1) - .5, + linestyle='--', color='red', alpha=.2) + locs += [t * (len(hetero_inds) + 1) * n_treatments + q * + (len(hetero_inds) + 1) - .501 + (len(hetero_inds) + 1) / 2] + labels += ["\n\n$\\tau_{{{}}}$".format(q)] + locs += [t * (len(hetero_inds) + 1) * n_treatments + (q * (len(hetero_inds) + 1) + qx) + for qx in np.arange(len(hetero_inds) + 1)] + labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] + plt.xticks(locs, labels) + plt.tight_layout() diff --git a/econml/tests/dgp.py b/econml/tests/dgp.py index 286496f73..513e30421 100644 --- a/econml/tests/dgp.py +++ b/econml/tests/dgp.py @@ -176,44 +176,3 @@ def policy_gen(Tpre, X, period): return self._gen_data_with_policy(n_units, policy_gen, random_seed=random_seed) -# Auxiliary function for adding xticks and vertical lines when plotting results -# for dynamic dml vs ground truth parameters. -def add_vlines(n_periods, n_treatments, hetero_inds): - locs, labels = plt.xticks([], []) - locs += [- .501 + (len(hetero_inds) + 1) / 2] - labels += ["\n\n$\\tau_{{{}}}$".format(0)] - locs += [qx for qx in np.arange(len(hetero_inds) + 1)] - labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] - for q in np.arange(1, n_treatments): - plt.axvline(x=q * (len(hetero_inds) + 1) - .5, - linestyle='--', color='red', alpha=.2) - locs += [q * (len(hetero_inds) + 1) - .501 + (len(hetero_inds) + 1) / 2] - labels += ["\n\n$\\tau_{{{}}}$".format(q)] - locs += [(q * (len(hetero_inds) + 1) + qx) - for qx in np.arange(len(hetero_inds) + 1)] - labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] - locs += [- .501 + (len(hetero_inds) + 1) * n_treatments / 2] - labels += ["\n\n\n\n$\\theta_{{{}}}$".format(0)] - for t in np.arange(1, n_periods): - plt.axvline(x=t * (len(hetero_inds) + 1) * - n_treatments - .5, linestyle='-', alpha=.6) - locs += [t * (len(hetero_inds) + 1) * n_treatments - .501 + - (len(hetero_inds) + 1) * n_treatments / 2] - labels += ["\n\n\n\n$\\theta_{{{}}}$".format(t)] - locs += [t * (len(hetero_inds) + 1) * - n_treatments - .501 + (len(hetero_inds) + 1) / 2] - labels += ["\n\n$\\tau_{{{}}}$".format(0)] - locs += [t * (len(hetero_inds) + 1) * n_treatments + - qx for qx in np.arange(len(hetero_inds) + 1)] - labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] - for q in np.arange(1, n_treatments): - plt.axvline(x=t * (len(hetero_inds) + 1) * n_treatments + q * (len(hetero_inds) + 1) - .5, - linestyle='--', color='red', alpha=.2) - locs += [t * (len(hetero_inds) + 1) * n_treatments + q * - (len(hetero_inds) + 1) - .501 + (len(hetero_inds) + 1) / 2] - labels += ["\n\n$\\tau_{{{}}}$".format(q)] - locs += [t * (len(hetero_inds) + 1) * n_treatments + (q * (len(hetero_inds) + 1) + qx) - for qx in np.arange(len(hetero_inds) + 1)] - labels += ["$1$"] + ["$x_{{{}}}$".format(qx) for qx in hetero_inds] - plt.xticks(locs, labels) - plt.tight_layout() diff --git a/notebooks/Dynamic Double Machine Learning Examples.ipynb b/notebooks/Dynamic Double Machine Learning Examples.ipynb index 1addbf6b5..040d15c86 100755 --- a/notebooks/Dynamic Double Machine Learning Examples.ipynb +++ b/notebooks/Dynamic Double Machine Learning Examples.ipynb @@ -87,13 +87,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Main imports\n", "from econml.panel.dml import DynamicDML\n", - "from econml.tests.dgp import DynamicPanelDGP, add_vlines\n", + "from econml.data.dynamic_panel_dgp import DynamicPanelDGP\n", + "from econml.panel.utilities import add_vlines\n", "\n", "# Helper imports\n", "import numpy as np\n", @@ -362,7 +363,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAEzCAYAAABjbqHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAApUklEQVR4nO3de3TV5Z3v8c/XGEiAXLiJkHAJHWTkThOp1Bs4KNg6x9RedHC1Vo8HOQU9p6elheW1q2Ori47tsHRE2nG0Z4rYUUSLzDBeoFOPtJBIhAJSaARJUAyBhABJSMJz/tgxTcKGBMiPh/3s92st1s7v+T3Z+Qj4XfvL8/x+P3POCQAAAACQ+C7wHQAAAAAA0DVo8AAAAAAgEDR4AAAAABAIGjwAAAAACAQNHgAAAAAEggYPAAAAAAJxoe8Ap6tfv35u2LBhvmMACMihugZJUmZaquckAEJCbQEQleLi4v3Ouf7xziVcgzds2DAVFRX5jgEgICV7qiRJEwZne80BICzUFgBRMbPdJzuXcA0eAHQ1PnwBiAK1BYAPXIMHAAAAAIGgwQOQ9H63o0K/21HhOwaAwFBbAPgQxBbNhoYGlZWVqa6uzncUNEtLS1Nubq5SU7mwHOe/+objviMACBC1BYAPQTR4ZWVlysjI0LBhw2RmvuMkPeecKisrVVZWpry8PN9xAAAAgKQRxBbNuro69e3bl+buPGFm6tu3LyuqAAAAwDkWRIMniebuPMOfBwAAAHDuBdPgna5bnl6nW55e12Xvl5KSogkTJmj06NEaP368Hn/8cR0/7mfvfVFRke69995Tzhk2bJjGjh2rsWPHatSoUbr//vtVX18vSdq1a5fMTA888EDL/P379ys1NVVz586VJD388MP6yU9+Et1/BHAOXZyVpouz0nzHABAYagsAH5K2wetq6enpKikp0ZYtW/T6669r1apV+sEPfuAlS0FBgRYtWtThvDVr1mjz5s1av369SktLNWvWrJZzw4cP18qVK1uO/+3f/k2jR4+OJC/g25icLI3JyfIdA0BgqC0AfEjKBm/FxnJt/LBKf/jggK549C2t2Fjepe9/0UUXacmSJXriiSfknNNVV12lkpKSlvNXXHGFNm3apIcfflh33nmnpkyZouHDh7dpygoLC5Wfn6/Ro0dryZIlLeO9evXS97//feXn52vatGlav359y/e/+uqrkqS1a9fqxhtvlCQdPnxYd9xxh8aOHatx48bppZdeOiFvr169tHjxYq1YsUIHDhyQFGtYL730UhUVFUmSXnjhBX3ta1/r0t8nAAAAAF0r6Rq8FRvLtWD5Zh1rim2fLK+q1YLlm7u8yRs+fLiOHz+uTz75RHfddZeeffZZSdKf/vQn1dfXa9y4cZKk999/X6tXr9b69ev1gx/8QA0NDZKkZ555RsXFxSoqKtKiRYtUWVkpSTpy5IimTJmi4uJiZWRk6P7779frr7+ul19+WQ8++OAJOX74wx8qKytLmzdv1qZNm3TttdfGzZuZmam8vDzt2LGjZezWW2/VsmXLVFZWppSUFA0aNKgrf4uA88aa7Z9ozfZPfMcAEBhqC9A5KzaW64pH31Le/Nf+svhSViyt/I70r1+JvZYV+46ZMCJt8MxshpltN7OdZjb/JHOmmFmJmW0xs99GmUeSFq7ertqGpjZjtQ1NWrh6e5f/LOecJOmrX/2qVq5cqYaGBj3zzDP65je/2TLni1/8orp3765+/frpoosu0r59+yRJixYt0vjx43X55Zdrz549LY1Xt27dNGPGDEnS2LFjdc011yg1NVVjx47Vrl27TsjwxhtvaM6cOS3HvXv37jDvp2bMmKHXX39dzz//vG655ZYz+j0AEkFTk1NTk+t4IgCcBmoL0LFPF1/Kq2rlFFt8+dXyl7Xv1Qek2kopc2Dsdc0jNHmdFNlz8MwsRdKTkq6TVCZpg5m96pzb2mpOtqR/kjTDOfehmV0UVZ5P7a2qPa3xM1VaWqqUlBRddNFFMjNdd911euWVV/TrX/+6ZdujJHXv3r3l65SUFDU2Nmrt2rV64403tG7dOvXo0UNTpkxpeeRAampqyx0qL7jggpbvv+CCC9TY2HhCDudcp+5oWVNTo127dumSSy5RdXW1pFgzmZ+fr3/4h3/Qli1b9Jvf/ObMf0MAAACAduItvvytW6PN+6UBg5uvYU1rfi1ZKuXmn+OEiSfKFbxJknY650qdc8ckLZN0U7s5MyUtd859KEnOucj3MQzKTj+t8TNRUVGh2bNna+7cuS3N1V133aV7771Xl112mfr06XPK76+urlbv3r3Vo0cPvf/++/r9739/xlmuv/56PfHEEy3HBw8ePGHO4cOH9a1vfUuFhYUnrPB95zvf0WOPPaa+ffuecQYAAAAgnniLLIOtQhXHurUd7J4hVe0+R6kSW5QNXo6kPa2Oy5rHWrtEUm8zW2tmxWb2jQjzSJLmTR+p9NSUNmPpqSmaN33kWb1vbW1ty2MSpk2bpuuvv14PPfRQy/n8/HxlZmbqjjvu6PC9ZsyYocbGRo0bN04PPPCALr/88jPOdf/99+vgwYMaM2aMxo8frzVr1rScmzp1qsaMGaNJkyZpyJAhevrpp0/4/tGjR+v222+P+95///d/r9zc3JZfAAAAwOmIt8iyx/VX/27H2g7W10jZQ89RqsRm7a+76rI3NvuqpOnOubuaj78uaZJz7p5Wc56QVCDpbySlS1on6YvOuT+1e69ZkmZJ0pAhQ/J3727bvW/btk2XXnppp7Ot2Fiu7724SceajisnO13zpo9U4cT2vWfX2rt3r6ZMmaL3339fF1yQHPe2Od0/F8CXbR8dkiRdOjDTcxIAIaG2AB379Bq81ts0L0v9QE8MXKUB/S+KrdzV10h1h6Sp97FFs5mZFTvnCuKdi+waPMVW7Aa3Os6VtDfOnP3OuSOSjpjZf0kaL6lNg+ecWyJpiSQVFBScdUdaODFHz6//UJL0wt2Tz/btOvTLX/5S9913nx5//PGkae6ARMKHLwBRoLYAHft0kWXh6u3aW1WrQdnpum36lzSg/+TYNXdVu2Mrd5PvobnrpChX8C5UrFH7G0nlkjZImumc29JqzqWSnpA0XVI3Sesl3eqc++PJ3regoMC1vkmJxErR+Yo/FwAAAKDreVnBc841mtlcSaslpUh6xjm3xcxmN59f7JzbZmb/IWmTpOOSfnGq5g4AovDG1tjjSaaNGuA5CYCQUFsA+BDlFk0551ZJWtVubHG744WSFkaZAwAAAACSAReEAQAAAEAgaPAAAAAAIBA0eF1k3759mjlzpoYPH678/HxNnjxZL7/88jnNsGvXLo0ZMybu+NKlS8/oPX/2s5/p6NGjLce9evU643wAAAAAokWD1wWccyosLNTVV1+t0tJSFRcXa9myZSorKzthbmNj4znPd6oGr6M87Rs8IERD+/bQ0L49fMcAEBhqCwAfIr3JynmrrLjtczUmzDyr52q89dZb6tatm2bPnt0yNnToUN1zT+yZ7s8++6xee+011dXV6ciRI3rxxRd15513qrS0VD169NCSJUs0btw4Pfzww+rVq5e++93vSpLGjBmjlStXSpJuuOEGXXnllXrnnXeUk5OjV155Renp6SouLtadd96pHj166Morr4ybb/78+dq2bZsmTJig22+/Xb17926T58EHH9RPfvKTlp81d+5cFRQU6NChQ9q7d6+mTp2qfv36ac2aNZKk++67TytXrlR6erpeeeUVDRjA3cGQ2EYMyPAdAUCAqC0AfEi+FbyyYmnNI1JtpZQ5MPa65pHY+BnasmWLPvvZz55yzrp16/Tcc8/prbfe0kMPPaSJEydq06ZN+tGPfqRvfOMbHf6MHTt2aM6cOdqyZYuys7P10ksvSZLuuOMOLVq0SOvWrTvp9z766KO66qqrVFJSom9/+9sn5DmZe++9V4MGDdKaNWtamrsjR47o8ssv13vvvaerr75aP//5zzvMDpzvGpuOq7HpuO8YAAJDbQHgQ/I1eCVLpbRMKS1Lsgtir2mZsfEuMmfOHI0fP16XXXZZy9h1112nPn36SJLefvttff3rX5ckXXvttaqsrFR1dfUp3zMvL08TJkyQJOXn52vXrl2qrq5WVVWVrrnmGklqec/OaJ3ndHTr1k033nhjmxxAolu7vUJrt1f4jgEgMNQWAD4kX4NXtVvq3m7LRPeM2PgZGj16tN59992W4yeffFJvvvmmKir+UtR79uzZ8rVz7oT3MDNdeOGFOn78L//SV1dX95eI3bu3fJ2SkqLGxkY552RmZ5S5dZ5T/dz2UlNTW37mpzkAAAAAnB+Sr8HLHirV17Qdq6+JjZ+ha6+9VnV1dXrqqadaxk51Y5Krr75av/rVryRJa9euVb9+/ZSZmalhw4a1NIrvvvuuPvjgg1P+3OzsbGVlZentt9+WpJb3bC8jI0M1NTVxz0mx6wW3bt2q+vp6VVdX68033+z09wIAAAA4fyRfgzdhplR3SKqrltzx2Gvdodj4GTIzrVixQr/97W+Vl5enSZMm6fbbb9djjz0Wd/7DDz+soqIijRs3TvPnz9dzzz0nSfryl7+sAwcOaMKECXrqqad0ySWXdPiz/+Vf/kVz5szR5MmTlZ6eHnfOuHHjdOGFF2r8+PH66U9/esL5wYMH62tf+5rGjRun2267TRMnTmw5N2vWLN1www2aOnVqZ34rAAAAAHhk8bYLns8KCgpcUVFRm7Ft27bp0ksv7fybdPFdNBHfaf+5AJ68sXWfJGnaKO4IC6DrUFsARMXMip1zBfHOJedjEnLzaegAtBjev2fHkwDgNFFbAPiQnA0eALQyvH8v3xEABIjaAsCH5LsGDwDaqWtoUl1Dk+8YAAJDbQHgQzANXqJdSxg6/jyQSN7esV9v79jvOwaAwFBbAPgQRIOXlpamyspKmorzhHNOlZWVSktL8x0FAAAASCpBXIOXm5ursrKyNg8Wh19paWnKzc31HQMAAABIKkE0eKmpqcrLy/MdAwAAAAC8CmKLJgAAAAAgkBU8ADgbIwZwK3MAXY/aAsAHGjwASW9oXx5GDKDrUVsA+MAWTQBJ70h9o47UN/qOASAw1BYAPtDgAUh66/5cqXV/rvQdA0BgqC0AfKDBAwAAAIBA0OABAAAAQCBo8AAAAAAgEDR4AAAAABAIHpMAIOn99cAM3xEABIjaAsAHGjwASS+3dw/fEQAEiNoCwIdIt2ia2Qwz225mO81sfpzzU8ys2sxKmn89GGUeAIinurZB1bUNvmMACAy1BYAPka3gmVmKpCclXSepTNIGM3vVObe13dTfOedujCoHAHRkwwcHJEnTRg3wnARASKgtAHyIcgVvkqSdzrlS59wxScsk3RThzwMAAACApBZlg5cjaU+r47LmsfYmm9l7ZvbvZjY6wjwAAAAAELQob7JiccZcu+N3JQ11zh02sy9IWiFpxAlvZDZL0ixJGjJkSBfHBAAAAIAwRLmCVyZpcKvjXEl7W09wzh1yzh1u/nqVpFQz69f+jZxzS5xzBc65gv79+0cYGQAAAAASV5QreBskjTCzPEnlkm6VNLP1BDO7WNI+55wzs0mKNZyVEWYCgBOMycnyHQFAgKgtAHyIrMFzzjWa2VxJqyWlSHrGObfFzGY3n18s6SuS/qeZNUqqlXSrc679Nk4AiNTFWWm+IwAIELUFgA+WaP1UQUGBKyoq8h0DQEAOHjkmSerds5vnJABCQm0BEBUzK3bOFcQ7F+mDzgEgERTvPqji3Qd9xwAQGGoLAB9o8AAAAAAgEDR4AAAAABAIGjwAAAAACAQNHgAAAAAEIsrn4AFAQhg/ONt3BAABorYA8IEGD0DS65/R3XcEAAGitgDwgS2aAJJeRU29KmrqfccAEBhqCwAfaPAAJL339lTpvT1VvmMACAy1BYAPNHgAAAAAEAgaPAAAAAAIBA0eAAAAAASCBg8AAAAAAsFjEgAkvfyhvX1HABAgagsAH2jwACS93j27+Y4AIEDUFgA+sEUTQNL7uLpOH1fX+Y4BIDDUFgA+sIIHIOn9sbxaknRxVprnJABCQm0B4AMreAAAAAAQCBo8AAAAAAgEDR4AAAAABIIGDwAAAAACwU1WACS9y/L6+I4AIEDUFgA+0OABSHpZ6am+IwAIELUFgA9s0QSQ9MoOHlXZwaO+YwAIDLUFgA+s4AFIeu9/VCNJyu3dw3MSACGhtgDwgRU8AAAAAAgEDR4AAAAABIIGDwAAAAACQYMHAAAAAIGItMEzsxlmtt3MdprZ/FPMu8zMmszsK1HmAYB4Jn+mryZ/pq/vGAACQ20B4ENkd9E0sxRJT0q6TlKZpA1m9qpzbmuceY9JWh1VFgA4lZ7duaEwgK5HbQHgQ5QreJMk7XTOlTrnjklaJummOPPukfSSpE8izAIAJ7W78oh2Vx7xHQNAYKgtAHyIssHLkbSn1XFZ81gLM8uR9CVJiyPMAQCntGPfYe3Yd9h3DACBobYA8CHKBs/ijLl2xz+T9H3nXNMp38hslpkVmVlRRUVFV+UDAAAAgKBEuTm8TNLgVse5kva2m1MgaZmZSVI/SV8ws0bn3IrWk5xzSyQtkaSCgoL2TSIAAAAAQNE2eBskjTCzPEnlkm6VNLP1BOdc3qdfm9mzkla2b+4AAAAAAJ0TWYPnnGs0s7mK3R0zRdIzzrktZja7+TzX3QEAAABAFzLnEmvHY0FBgSsqKvIdA0BA6hpilwGnpaZ4TgIgJNQWAFExs2LnXEG8czygBUDSS/YPX7c8vU6S9MLdkz0nAcKS7LUFgB9R3kUTABJCacVhlVZwK3MAXYvaAsAHGjwASa+04ohKK3gYMYCuRW0B4AMNHgAAAAAEggYPAAAAAAJBgwcAAAAAgaDBAwAAAIBA8JgEAElvysj+viMACBC1BYAPNHgAkt6FKWxmAND1qC0AfKDyAEh6O/bVaMe+Gt8xAASG2gLABxo8AElvd+VR7a486jsGgMBQWwD4QIMHAAAAAIGgwQMAAACAQNDgAQAAAEAgaPAAAAAAIBA8JgFA0ps2aoDvCAACRG0B4AMreAAAAAAQCBo8AElv20eHtO2jQ75jAAgMtQWADzR4AJJe+cFalR+s9R0DQGCoLQB8oMEDAAAAgEDQ4AEAAABAIGjwAAAAACAQPCYBQNJLSTHfEQAEiNoCwAcaPABJb+rIi3xHABAgagsAH9iiCQBJbMXGcm38sEp/+OCArnj0La3YWO47EgAAOAs0eACS3h/Lq/XH8mrfMc65FRvLtWD5Zh1rOi5JKq+q1YLlm2nygC6SrLUFgF+davDM7P92ZgwAEtHH1XX6uLrOd4xzbuHq7aptaGozVtvQpIWrt3tKBIQlWWsLAL86u4I3uvWBmaVIyu/6OACAc2VvVfwHMJ9sHAAAnP9O2eCZ2QIzq5E0zswONf+qkfSJpFfOSUIAQCQGZaef1jgAADj/nbLBc8792DmXIWmhcy6z+VeGc66vc25BR29uZjPMbLuZ7TSz+XHO32Rmm8ysxMyKzOzKs/hvAQCchnnTRyo9NaXNWHpqiuZNH+kpEQAAOFud3aK53syyPj0ws2wzKzzVNzRv43xS0g2SRkn6OzMb1W7am5LGO+cmSLpT0i86mQcAukz31AvUPTX57jlVODFHP755rLqlxP7bc7LT9eObx6pwYo7nZDif3fL0Ot3y9DrfMRJCstYWAH519jl4DznnXv70wDlXZWYPSVpxiu+ZJGmnc65UksxsmaSbJG1t9T6HW83vKcl1Mg8AdJmrRvT3HcGbwok5en79h5KkF+6e7DkNEJZkri0A/OnsPyvFm9dRc5gjaU+r47LmsTbM7Etm9r6k1xRbxQMAAAAAnIHOruAVmdnjim25dJLukVTcwfdYnLETVuiaVwZfNrOrJf1Q0rQT3shslqRZkjRkyJBORgaAzinZUyVJmjA422uO80pZsVSyVKraLWUPlSbMlHK5eTJwOqgtAHzo7ArePZKOSXpB0q8l1Uqa08H3lEka3Oo4V9Lek012zv2XpM+YWb8455Y45wqccwX9+7PdAUDX2l9Tr/019b5jnD/KiqU1j0i1lVLmwNjrmkdi4wA6jdoCwIdOreA5545Imm9mvdpdN3cqGySNMLM8SeWSbpU0s/UEM/srSX92zjkz+6ykbpIqO50eAND1SpZKaZlSWvO9tT59LVnKKh4AAOe5Tq3gmdnnzWyrmm+QYmbjzeyfTvU9zrlGSXMlrZa0TdKvnXNbzGy2mc1unvZlSX80sxLFtn/e4pzjRisA4FPVbql7Rtux7hmxcQAAcF7r7DV4P5U0XdKrkuSce6/5mrlTcs6tkrSq3djiVl8/JumxTqcFAEQve2hsW2Za1l/G6mti4wAA4LzW6YezOOf2tBtq6uIsAOBFj24p6tEtpeOJyWLCTKnukFRXLbnjsde6Q7FxAJ1GbQHgQ2dX8PaY2eclOTPrJulexbZdAkDC+/xfnXBvp+SWmy9Nva/tXTQn38P1d8BporYA8KGzDd5sSf+o2HPsyiT9pzq+iyYAIFHl5tPQAQCQgE7Z4JnZY86570ua6py77RxlAoBzqnj3AUlS/tA+npMACAm1BYAPHV2D9wUzS5W04FyEAQAfDh5p0MEjDb5jAAgMtQWADx1t0fwPSfsl9TSzQ5JMkvv01TmXGXE+AAAAAEAndbSCd79zLkvSa865TOdcRuvXcxEQAAAAANA5HTV465pfD0UdBAAAAABwdjraotnNzG6X9Hkzu7n9Sefc8mhiAcC5k5HW2RsKA0DnUVsA+NBR5Zkt6TZJ2ZL+tt05J4kGD0DC+9zwvr4jAAgQtQWAD6ds8Jxzb0t628yKnHP/fI4yAQAAAADOwCmvwTOz70mSc+6fzeyr7c79KMpgAHCu/KG0Un8orfQdA0BgqC0AfOjoJiu3tvq6/bPwZnRxFgDwoqauUTV1jb5jAAgMtQWADx1dg2cn+TreMQAASDZlxVLJUqlqt5Q9VJowU8rN950KAJJWRyt47iRfxzsGAADJpKxYWvOIVFspZQ6Mva55JDYOAPCioxW88WZ2SLHVuvTmr9V8nBZpMgDAOfHC3ZN9R0CiKlkqpWVKaVmx409fS5ayigcAnnR0F82UcxUEAHzp3TPVdwQgIazYWK6NH1bpWNNxXfHoW3opc7suzs1rO6l7Rmy7JqgtALzgCZwAkl7+0D6+IwDnvRUby7Vg+WYdazouSSqvqtVbR9N09YWfKHfgxX+ZWF8TuxYP1BYAXnR0DR4AAIAWrt6u2oamNmPLGq5S2UcfS3XVkjsee607FLvRCgDACxo8AEnvnZ379c7O/b5jAOe1vVW1J4xtcn+lH9fdLKX3lQ59FHudeh/X3zWjtgDwgS2aAJLe0WNNHU8Cktyg7HSVx2ny9meNlW78Xx4Snf+oLQB8YAUPAAB0aN70kUpPbXvvtfTUFM2bPtJTIgBAPKzgAQCADhVOzJEkfe/FTTrWdFw52emaN31kyzgA4PxAgwcAADqlcGKOnl//oSSenwgA5ysaPABJr19Gd98RAASI2gLABxo8AElvwuBs3xEABIjaAsAHbrICAAAAAIGgwQOQ9H63o0K/21HhOwaAwFBbAPjAFk0ASa++4bjvCAACRG0B4EOkK3hmNsPMtpvZTjObH+f8bWa2qfnXO2Y2Pso8AAAAABCyyBo8M0uR9KSkGySNkvR3Zjaq3bQPJF3jnBsn6YeSlkSVBwAAAABCF+UK3iRJO51zpc65Y5KWSbqp9QTn3DvOuYPNh7+XlBthHgAAAAAIWpTX4OVI2tPquEzS504x/79L+vcI8wBAXBdnpfmOACBA1BYAPkTZ4FmcMRd3otlUxRq8K09yfpakWZI0ZMiQrsoHAJKkMTlZviMACBC1BYAPUW7RLJM0uNVxrqS97SeZ2ThJv5B0k3OuMt4bOeeWOOcKnHMF/fv3jyQsAAAAACS6KBu8DZJGmFmemXWTdKukV1tPMLMhkpZL+rpz7k8RZgGAk1qz/ROt2f6J7xgAAkNtAeBDZFs0nXONZjZX0mpJKZKecc5tMbPZzecXS3pQUl9J/2RmktTonCuIKhMAxNPUFHf3OACcFWoLAB8ifdC5c26VpFXtxha3+vouSXdFmQEAAAAAkkWkDzoHAAAAAJw7NHgAAAAAEIhIt2gCQCLI6Z3uOwKAAFFbAPhAgwcg6V06MNN3BAABorYA8IEtmgAAAAAQCBo8AEnvja379MbWfb5jAAgMtQWADzR4AAAAABAIrsEDAACd9sLdk31HAACcAit4AAAAABAIGjwAAAAACARbNAEkvaF9e/iOACBA1BYAPtDgAUh6IwZk+I4AIEDUFgA+sEUTQNJrbDquxqbjvmMACAy1BYAPNHgAkt7a7RVau73CdwwAgaG2APCBBg8I1C1Pr9MtT6/zHQMAAADnEA0eAAAAAASCBg8AAAAAAkGDBwAAAACB4DEJAJLe8P49fUcAEKBkri0rNpZr4ert2ltVq0HZ6Zo3faQKJ+ZIZcVSyVKpareUPVSaMFPKzfcdFwgKDR6ApDe8fy/fEQAEKFlry4qN5VqwfLNqG5okSeVVtVqwfLOyD2zSlL0/l9IypcyBUm2ltOYRaep9NHlAF2KLJoCkV9fQpLrmDyIA0FWStbYsXL29pbn7VG1DkyrfeTbW3KVlSXZB7DUtM7aiB6DL0OABSHpv79ivt3fs9x0DQGCStbbsraqNO97n2EdS94y2g90zYts1AXQZGjwAAAB0mUHZ6XHHD3QbKNXXtB2sr4ldiwegy9DgAQAAoMvMmz5S6akpbcbSU1PU9/PflOoOSXXVkjsee607FLvRCoAuw01WAAAA0GUKJ+ZI0gl30ZwyMUcqu6jtXTQn38MNVoAuRoOXQG55ep0k6YW7J3tOAgAAcHKFE3NaGr02cvNp6ICI0eABSHojBiTnrcwBRIvaAsAHGjwASW9o3+R9GDGA6FBbAPjATVYAJL0j9Y06Ut/oOwaAwFBbAPgQaYNnZjPMbLuZ7TSz+XHO/7WZrTOzejP7bpRZAOBk1v25Uuv+XOk7BoDAUFsA+BDZFk0zS5H0pKTrJJVJ2mBmrzrntraadkDSvZIKo8oBAAAAAMkiyhW8SZJ2OudKnXPHJC2TdFPrCc65T5xzGyQ1RJgDAAAAAJJClA1ejqQ9rY7LmscAAAAAABGIssGzOGPujN7IbJaZFZlZUUVFxVnGAgAAAIAwRfmYhDJJg1sd50raeyZv5JxbImmJJBUUFJxRkwgAJ/PXAzN8RwAQIGoLAB+ibPA2SBphZnmSyiXdKmlmhD8PAM5Ibu8eviMACBC1BYAPkTV4zrlGM5srabWkFEnPOOe2mNns5vOLzexiSUWSMiUdN7P/LWmUc+5QVLkAoL3q2th9nrLSUz0nARASagsAH6JcwZNzbpWkVe3GFrf6+mPFtm4CgDcbPjggSZo2aoDnJABCQm0B4EOkDzoHAAAAAJw7NHgAAAAAEAgaPAAAAAAIBA0eEKAVG8u18cMq/eGDA7ri0be0YmO570gAAAA4ByK9yQqAc2/FxnItWL5Zx5qOS5LKq2q1YPlmSVLhxByf0c5bY3KyfEcAECBqCwAfWMEDArNw9XbVNjS1GattaNLC1ds9JTr/XZyVpouz0nzHABAYagsAH2jwgMDsrao9rXFIB48c08Ejx3zHABAYagsAH2jwgMAMyk4/rXFIxbsPqnj3Qd8xAASG2gLABxo8IDDzpo9UempKm7H01BQ9clm9tPI70r9+JfZaVuwpIQAAAKJCg5foyor50I42Cifm6Mc3j1W3lNj/3jnZ6XpqitOUvT+XaiulzIGx1zWP8PcFAAAgMDR4iaysOPYhnQ/taKdwYo4mDsnW5/L66P/Nv1ZTat+Q0jKltCzJLoi9pmVKJUt9RwUAAEAXosFLZCVL+dCOzqnaLXXPaDvWPSM2DgAAgGDwHLxEVrU7tnLXGh/aEU/20NgKb1qrZzLV18TGofGDs31HABAgagsAH1jBS2TZQ2Mf0lvjQzvimTBTqjsk1VVL7njste5QbBzqn9Fd/TO6+44BIDDUFgA+0OAliBUby7Xxwyr94YMDuuLRt7RiYzkf2tF5ufnS1Puk9L7SoY9ir1Pvi41DFTX1qqip9x0DQGCoLQB8YItmAlixsVwLlm/WsabjkqTyqlotWL5ZunmsCqfeF7vmrmp3bOVu8j18aEd8ufn83TiJ9/ZUSZKmjRrgNwiAoFBbAPhAg5cAFq7ertqGpjZjtQ1NWrh6uwrnX8uHdgAAAACS2KKZEPZW1Z7WOAAAAIDkRIOXAAZlp5/WOAAAAIDkRIOXAOZNH6n01JQ2Y+mpKZo3faSnRAAAAADOR1yDlwAKJ+ZIkr734iYdazqunOx0zZs+smUcwNnJH9rbdwQAAaK2APCBBi9BFE7M0fPrP5QkvXD3ZM9pgLD07tnNdwQAAaK2APCBLZoAkt7H1XX6uLrOdwwAgaG2APCBFTwASe+P5dWSpIuz0jwnARASagsAH1jBAwAAAIBA0OABAAAAQCBo8AAAAAAgEDR4AAAAABCISBs8M5thZtvNbKeZzY9z3sxsUfP5TWb22SjzAEA8l+X10WV5fXzHABAYagsAHyK7i6aZpUh6UtJ1ksokbTCzV51zW1tNu0HSiOZfn5P0VPMrAJwzWempviMACBC1BYAPUa7gTZK00zlX6pw7JmmZpJvazblJ0i9dzO8lZZvZwAgzAcAJyg4eVdnBo75jAAgMtQWAD1E2eDmS9rQ6LmseO905ABCp9z+q0fsf1fiOASAw1BYAPkTZ4FmcMXcGc2Rms8ysyMyKKioquiQcAAAAAIQmygavTNLgVse5kvaewRw555Y45wqccwX9+/fv8qAAAAAAEIIoG7wNkkaYWZ6ZdZN0q6RX2815VdI3mu+mebmkaufcRxFmAgAAAIBgRXYXTedco5nNlbRaUoqkZ5xzW8xsdvP5xZJWSfqCpJ2Sjkq6I6o8AAAAABC6yBo8SXLOrVKsiWs9trjV107SnCgzAMnqhbsn+46QMCZ/pq/vCAACRG0B4EOkDR4AJIKe3SmFALoetQWAD1FegwcACWF35RHtrjziOwaAwFBbAPjAPy0BSHo79h2WJA3t29NzEgAhobYA8IEVPAAAAAAIBA0eAAAAAASCBg8AAAAAAkGDBwAAAACB4CYrAJLelSP6+Y4AIEDUFgA+0OABSHppqSm+IwAIELUFgA9s0QSQ9EorDqu04rDvGAACQ20B4AMNHoCkV1pxRKUVPIwYQNeitgDwgS2aCeSFuyf7jgAAAADgPMYKHgAAAAAEggYPAAAAAAJBgwcAAAAAgeAaPABJb8rI/r4jAAgQtQWADzR4AJLehSlsZgDQ9agtAHyg8gBIejv21WjHvhrfMQAEhtoCwAcaPABJb3flUe2uPOo7BoDAUFsA+ECDBwAAAACBoMEDAAAAgEDQ4AEAAABAIGjwAAAAACAQ5pzzneG0mFmFpN2+cyBh9JO033cIAMGhtgCIArUFnTXUORf3YZsJ1+ABp8PMipxzBb5zAAgLtQVAFKgt6Aps0QQAAACAQNDgAQAAAEAgaPAQuiW+AwAIErUFQBSoLThrXIMHAAAAAIFgBQ8AAAAAAkGDBwAAAACBoMEDAAAAgEDQ4CEoZpZiZv9oZlvMbLOZDfedCUDio7YAiAK1BVGgwUNoFkgqdc6NlrRI0rc85wEQBmoLgChQW9DlLvQdAOgqZtZT0pecc/nNQx9I+qLHSAACQG0BEAVqC6JCg4eQTJM02MxKmo/7SHrDXxwAgaC2AIgCtQWRYIsmQjJB0oPOuQnOuQmS/lNSiZn1NLPnzOznZnab14QAEtEExa8tw83sn83sRa/pACSqCYpfWwqbP7O8YmbXe02IhESDh5D0lnRUkszsQknXS/qNpJslveic+x+S/pu/eAASVNza4pwrdc79d6/JACSyk9WWFc2fWb4p6RZ/8ZCoaPAQkj9Jurz5629Les0594GkXEl7msebfAQDkNBOVlsA4Gx0VFvul/TkOU+FhEeDh5A8L+mzZrZT0jhJ/6d5vEyxJk/i7zyA03ey2gIAZyNubbGYxyT9u3PuXZ8BkZjMOec7AxCp5rtUPSGpTtLbzrlfeY4EIABm1lfSI5Kuk/QL59yPPUcCEAAzu1fS7ZI2SCpxzi32HAkJhgYPAAAAAALBdjUAAAAACAQNHgAAAAAEggYPAAAAAAJBgwcAAAAAgaDBAwAAAIBA0OABAAAAQCBo8AAAAAAgEDR4AAAAABAIGjwAAAAACMT/B1HSZiIhWdHSAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAEzCAYAAABjbqHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAApUklEQVR4nO3de3TV5Z3v8c/XGEiAXLiJkHAJHWTkThOp1Bs4KNg6x9RedHC1Vo8HOQU9p6elheW1q2Ori47tsHRE2nG0Z4rYUUSLzDBeoFOPtJBIhAJSaARJUAyBhABJSMJz/tgxTcKGBMiPh/3s92st1s7v+T3Z+Qj4XfvL8/x+P3POCQAAAACQ+C7wHQAAAAAA0DVo8AAAAAAgEDR4AAAAABAIGjwAAAAACAQNHgAAAAAEggYPAAAAAAJxoe8Ap6tfv35u2LBhvmMACMihugZJUmZaquckAEJCbQEQleLi4v3Ouf7xziVcgzds2DAVFRX5jgEgICV7qiRJEwZne80BICzUFgBRMbPdJzuXcA0eAHQ1PnwBiAK1BYAPXIMHAAAAAIGgwQOQ9H63o0K/21HhOwaAwFBbAPgQxBbNhoYGlZWVqa6uzncUNEtLS1Nubq5SU7mwHOe/+objviMACBC1BYAPQTR4ZWVlysjI0LBhw2RmvuMkPeecKisrVVZWpry8PN9xAAAAgKQRxBbNuro69e3bl+buPGFm6tu3LyuqAAAAwDkWRIMniebuPMOfBwAAAHDuBdPgna5bnl6nW55e12Xvl5KSogkTJmj06NEaP368Hn/8cR0/7mfvfVFRke69995Tzhk2bJjGjh2rsWPHatSoUbr//vtVX18vSdq1a5fMTA888EDL/P379ys1NVVz586VJD388MP6yU9+Et1/BHAOXZyVpouz0nzHABAYagsAH5K2wetq6enpKikp0ZYtW/T6669r1apV+sEPfuAlS0FBgRYtWtThvDVr1mjz5s1av369SktLNWvWrJZzw4cP18qVK1uO/+3f/k2jR4+OJC/g25icLI3JyfIdA0BgqC0AfEjKBm/FxnJt/LBKf/jggK549C2t2Fjepe9/0UUXacmSJXriiSfknNNVV12lkpKSlvNXXHGFNm3apIcfflh33nmnpkyZouHDh7dpygoLC5Wfn6/Ro0dryZIlLeO9evXS97//feXn52vatGlav359y/e/+uqrkqS1a9fqxhtvlCQdPnxYd9xxh8aOHatx48bppZdeOiFvr169tHjxYq1YsUIHDhyQFGtYL730UhUVFUmSXnjhBX3ta1/r0t8nAAAAAF0r6Rq8FRvLtWD5Zh1rim2fLK+q1YLlm7u8yRs+fLiOHz+uTz75RHfddZeeffZZSdKf/vQn1dfXa9y4cZKk999/X6tXr9b69ev1gx/8QA0NDZKkZ555RsXFxSoqKtKiRYtUWVkpSTpy5IimTJmi4uJiZWRk6P7779frr7+ul19+WQ8++OAJOX74wx8qKytLmzdv1qZNm3TttdfGzZuZmam8vDzt2LGjZezWW2/VsmXLVFZWppSUFA0aNKgrf4uA88aa7Z9ozfZPfMcAEBhqC9A5KzaW64pH31Le/Nf+svhSViyt/I70r1+JvZYV+46ZMCJt8MxshpltN7OdZjb/JHOmmFmJmW0xs99GmUeSFq7ertqGpjZjtQ1NWrh6e5f/LOecJOmrX/2qVq5cqYaGBj3zzDP65je/2TLni1/8orp3765+/frpoosu0r59+yRJixYt0vjx43X55Zdrz549LY1Xt27dNGPGDEnS2LFjdc011yg1NVVjx47Vrl27TsjwxhtvaM6cOS3HvXv37jDvp2bMmKHXX39dzz//vG655ZYz+j0AEkFTk1NTk+t4IgCcBmoL0LFPF1/Kq2rlFFt8+dXyl7Xv1Qek2kopc2Dsdc0jNHmdFNlz8MwsRdKTkq6TVCZpg5m96pzb2mpOtqR/kjTDOfehmV0UVZ5P7a2qPa3xM1VaWqqUlBRddNFFMjNdd911euWVV/TrX/+6ZdujJHXv3r3l65SUFDU2Nmrt2rV64403tG7dOvXo0UNTpkxpeeRAampqyx0qL7jggpbvv+CCC9TY2HhCDudcp+5oWVNTo127dumSSy5RdXW1pFgzmZ+fr3/4h3/Qli1b9Jvf/ObMf0MAAACAduItvvytW6PN+6UBg5uvYU1rfi1ZKuXmn+OEiSfKFbxJknY650qdc8ckLZN0U7s5MyUtd859KEnOucj3MQzKTj+t8TNRUVGh2bNna+7cuS3N1V133aV7771Xl112mfr06XPK76+urlbv3r3Vo0cPvf/++/r9739/xlmuv/56PfHEEy3HBw8ePGHO4cOH9a1vfUuFhYUnrPB95zvf0WOPPaa+ffuecQYAAAAgnniLLIOtQhXHurUd7J4hVe0+R6kSW5QNXo6kPa2Oy5rHWrtEUm8zW2tmxWb2jQjzSJLmTR+p9NSUNmPpqSmaN33kWb1vbW1ty2MSpk2bpuuvv14PPfRQy/n8/HxlZmbqjjvu6PC9ZsyYocbGRo0bN04PPPCALr/88jPOdf/99+vgwYMaM2aMxo8frzVr1rScmzp1qsaMGaNJkyZpyJAhevrpp0/4/tGjR+v222+P+95///d/r9zc3JZfAAAAwOmIt8iyx/VX/27H2g7W10jZQ89RqsRm7a+76rI3NvuqpOnOubuaj78uaZJz7p5Wc56QVCDpbySlS1on6YvOuT+1e69ZkmZJ0pAhQ/J3727bvW/btk2XXnppp7Ot2Fiu7724SceajisnO13zpo9U4cT2vWfX2rt3r6ZMmaL3339fF1yQHPe2Od0/F8CXbR8dkiRdOjDTcxIAIaG2AB379Bq81ts0L0v9QE8MXKUB/S+KrdzV10h1h6Sp97FFs5mZFTvnCuKdi+waPMVW7Aa3Os6VtDfOnP3OuSOSjpjZf0kaL6lNg+ecWyJpiSQVFBScdUdaODFHz6//UJL0wt2Tz/btOvTLX/5S9913nx5//PGkae6ARMKHLwBRoLYAHft0kWXh6u3aW1WrQdnpum36lzSg/+TYNXdVu2Mrd5PvobnrpChX8C5UrFH7G0nlkjZImumc29JqzqWSnpA0XVI3Sesl3eqc++PJ3regoMC1vkmJxErR+Yo/FwAAAKDreVnBc841mtlcSaslpUh6xjm3xcxmN59f7JzbZmb/IWmTpOOSfnGq5g4AovDG1tjjSaaNGuA5CYCQUFsA+BDlFk0551ZJWtVubHG744WSFkaZAwAAAACSAReEAQAAAEAgaPAAAAAAIBA0eF1k3759mjlzpoYPH678/HxNnjxZL7/88jnNsGvXLo0ZMybu+NKlS8/oPX/2s5/p6NGjLce9evU643wAAAAAokWD1wWccyosLNTVV1+t0tJSFRcXa9myZSorKzthbmNj4znPd6oGr6M87Rs8IERD+/bQ0L49fMcAEBhqCwAfIr3JynmrrLjtczUmzDyr52q89dZb6tatm2bPnt0yNnToUN1zT+yZ7s8++6xee+011dXV6ciRI3rxxRd15513qrS0VD169NCSJUs0btw4Pfzww+rVq5e++93vSpLGjBmjlStXSpJuuOEGXXnllXrnnXeUk5OjV155Renp6SouLtadd96pHj166Morr4ybb/78+dq2bZsmTJig22+/Xb17926T58EHH9RPfvKTlp81d+5cFRQU6NChQ9q7d6+mTp2qfv36ac2aNZKk++67TytXrlR6erpeeeUVDRjA3cGQ2EYMyPAdAUCAqC0AfEi+FbyyYmnNI1JtpZQ5MPa65pHY+BnasmWLPvvZz55yzrp16/Tcc8/prbfe0kMPPaSJEydq06ZN+tGPfqRvfOMbHf6MHTt2aM6cOdqyZYuys7P10ksvSZLuuOMOLVq0SOvWrTvp9z766KO66qqrVFJSom9/+9sn5DmZe++9V4MGDdKaNWtamrsjR47o8ssv13vvvaerr75aP//5zzvMDpzvGpuOq7HpuO8YAAJDbQHgQ/I1eCVLpbRMKS1Lsgtir2mZsfEuMmfOHI0fP16XXXZZy9h1112nPn36SJLefvttff3rX5ckXXvttaqsrFR1dfUp3zMvL08TJkyQJOXn52vXrl2qrq5WVVWVrrnmGklqec/OaJ3ndHTr1k033nhjmxxAolu7vUJrt1f4jgEgMNQWAD4kX4NXtVvq3m7LRPeM2PgZGj16tN59992W4yeffFJvvvmmKir+UtR79uzZ8rVz7oT3MDNdeOGFOn78L//SV1dX95eI3bu3fJ2SkqLGxkY552RmZ5S5dZ5T/dz2UlNTW37mpzkAAAAAnB+Sr8HLHirV17Qdq6+JjZ+ha6+9VnV1dXrqqadaxk51Y5Krr75av/rVryRJa9euVb9+/ZSZmalhw4a1NIrvvvuuPvjgg1P+3OzsbGVlZentt9+WpJb3bC8jI0M1NTVxz0mx6wW3bt2q+vp6VVdX68033+z09wIAAAA4fyRfgzdhplR3SKqrltzx2Gvdodj4GTIzrVixQr/97W+Vl5enSZMm6fbbb9djjz0Wd/7DDz+soqIijRs3TvPnz9dzzz0nSfryl7+sAwcOaMKECXrqqad0ySWXdPiz/+Vf/kVz5szR5MmTlZ6eHnfOuHHjdOGFF2r8+PH66U9/esL5wYMH62tf+5rGjRun2267TRMnTmw5N2vWLN1www2aOnVqZ34rAAAAAHhk8bYLns8KCgpcUVFRm7Ft27bp0ksv7fybdPFdNBHfaf+5AJ68sXWfJGnaKO4IC6DrUFsARMXMip1zBfHOJedjEnLzaegAtBjev2fHkwDgNFFbAPiQnA0eALQyvH8v3xEABIjaAsCH5LsGDwDaqWtoUl1Dk+8YAAJDbQHgQzANXqJdSxg6/jyQSN7esV9v79jvOwaAwFBbAPgQRIOXlpamyspKmorzhHNOlZWVSktL8x0FAAAASCpBXIOXm5ursrKyNg8Wh19paWnKzc31HQMAAABIKkE0eKmpqcrLy/MdAwAAAAC8CmKLJgAAAAAgkBU8ADgbIwZwK3MAXY/aAsAHGjwASW9oXx5GDKDrUVsA+MAWTQBJ70h9o47UN/qOASAw1BYAPtDgAUh66/5cqXV/rvQdA0BgqC0AfKDBAwAAAIBA0OABAAAAQCBo8AAAAAAgEDR4AAAAABAIHpMAIOn99cAM3xEABIjaAsAHGjwASS+3dw/fEQAEiNoCwIdIt2ia2Qwz225mO81sfpzzU8ys2sxKmn89GGUeAIinurZB1bUNvmMACAy1BYAPka3gmVmKpCclXSepTNIGM3vVObe13dTfOedujCoHAHRkwwcHJEnTRg3wnARASKgtAHyIcgVvkqSdzrlS59wxScsk3RThzwMAAACApBZlg5cjaU+r47LmsfYmm9l7ZvbvZjY6wjwAAAAAELQob7JiccZcu+N3JQ11zh02sy9IWiFpxAlvZDZL0ixJGjJkSBfHBAAAAIAwRLmCVyZpcKvjXEl7W09wzh1yzh1u/nqVpFQz69f+jZxzS5xzBc65gv79+0cYGQAAAAASV5QreBskjTCzPEnlkm6VNLP1BDO7WNI+55wzs0mKNZyVEWYCgBOMycnyHQFAgKgtAHyIrMFzzjWa2VxJqyWlSHrGObfFzGY3n18s6SuS/qeZNUqqlXSrc679Nk4AiNTFWWm+IwAIELUFgA+WaP1UQUGBKyoq8h0DQEAOHjkmSerds5vnJABCQm0BEBUzK3bOFcQ7F+mDzgEgERTvPqji3Qd9xwAQGGoLAB9o8AAAAAAgEDR4AAAAABAIGjwAAAAACAQNHgAAAAAEIsrn4AFAQhg/ONt3BAABorYA8IEGD0DS65/R3XcEAAGitgDwgS2aAJJeRU29KmrqfccAEBhqCwAfaPAAJL339lTpvT1VvmMACAy1BYAPNHgAAAAAEAgaPAAAAAAIBA0eAAAAAASCBg8AAAAAAsFjEgAkvfyhvX1HABAgagsAH2jwACS93j27+Y4AIEDUFgA+sEUTQNL7uLpOH1fX+Y4BIDDUFgA+sIIHIOn9sbxaknRxVprnJABCQm0B4AMreAAAAAAQCBo8AAAAAAgEDR4AAAAABIIGDwAAAAACwU1WACS9y/L6+I4AIEDUFgA+0OABSHpZ6am+IwAIELUFgA9s0QSQ9MoOHlXZwaO+YwAIDLUFgA+s4AFIeu9/VCNJyu3dw3MSACGhtgDwgRU8AAAAAAgEDR4AAAAABIIGDwAAAAACQYMHAAAAAIGItMEzsxlmtt3MdprZ/FPMu8zMmszsK1HmAYB4Jn+mryZ/pq/vGAACQ20B4ENkd9E0sxRJT0q6TlKZpA1m9qpzbmuceY9JWh1VFgA4lZ7duaEwgK5HbQHgQ5QreJMk7XTOlTrnjklaJummOPPukfSSpE8izAIAJ7W78oh2Vx7xHQNAYKgtAHyIssHLkbSn1XFZ81gLM8uR9CVJiyPMAQCntGPfYe3Yd9h3DACBobYA8CHKBs/ijLl2xz+T9H3nXNMp38hslpkVmVlRRUVFV+UDAAAAgKBEuTm8TNLgVse5kva2m1MgaZmZSVI/SV8ws0bn3IrWk5xzSyQtkaSCgoL2TSIAAAAAQNE2eBskjTCzPEnlkm6VNLP1BOdc3qdfm9mzkla2b+4AAAAAAJ0TWYPnnGs0s7mK3R0zRdIzzrktZja7+TzX3QEAAABAFzLnEmvHY0FBgSsqKvIdA0BA6hpilwGnpaZ4TgIgJNQWAFExs2LnXEG8czygBUDSS/YPX7c8vU6S9MLdkz0nAcKS7LUFgB9R3kUTABJCacVhlVZwK3MAXYvaAsAHGjwASa+04ohKK3gYMYCuRW0B4AMNHgAAAAAEggYPAAAAAAJBgwcAAAAAgaDBAwAAAIBA8JgEAElvysj+viMACBC1BYAPNHgAkt6FKWxmAND1qC0AfKDyAEh6O/bVaMe+Gt8xAASG2gLABxo8AElvd+VR7a486jsGgMBQWwD4QIMHAAAAAIGgwQMAAACAQNDgAQAAAEAgaPAAAAAAIBA8JgFA0ps2aoDvCAACRG0B4AMreAAAAAAQCBo8AElv20eHtO2jQ75jAAgMtQWADzR4AJJe+cFalR+s9R0DQGCoLQB8oMEDAAAAgEDQ4AEAAABAIGjwAAAAACAQPCYBQNJLSTHfEQAEiNoCwAcaPABJb+rIi3xHABAgagsAH9iiCQBJbMXGcm38sEp/+OCArnj0La3YWO47EgAAOAs0eACS3h/Lq/XH8mrfMc65FRvLtWD5Zh1rOi5JKq+q1YLlm2nygC6SrLUFgF+davDM7P92ZgwAEtHH1XX6uLrOd4xzbuHq7aptaGozVtvQpIWrt3tKBIQlWWsLAL86u4I3uvWBmaVIyu/6OACAc2VvVfwHMJ9sHAAAnP9O2eCZ2QIzq5E0zswONf+qkfSJpFfOSUIAQCQGZaef1jgAADj/nbLBc8792DmXIWmhcy6z+VeGc66vc25BR29uZjPMbLuZ7TSz+XHO32Rmm8ysxMyKzOzKs/hvAQCchnnTRyo9NaXNWHpqiuZNH+kpEQAAOFud3aK53syyPj0ws2wzKzzVNzRv43xS0g2SRkn6OzMb1W7am5LGO+cmSLpT0i86mQcAukz31AvUPTX57jlVODFHP755rLqlxP7bc7LT9eObx6pwYo7nZDif3fL0Ot3y9DrfMRJCstYWAH519jl4DznnXv70wDlXZWYPSVpxiu+ZJGmnc65UksxsmaSbJG1t9T6HW83vKcl1Mg8AdJmrRvT3HcGbwok5en79h5KkF+6e7DkNEJZkri0A/OnsPyvFm9dRc5gjaU+r47LmsTbM7Etm9r6k1xRbxQMAAAAAnIHOruAVmdnjim25dJLukVTcwfdYnLETVuiaVwZfNrOrJf1Q0rQT3shslqRZkjRkyJBORgaAzinZUyVJmjA422uO80pZsVSyVKraLWUPlSbMlHK5eTJwOqgtAHzo7ArePZKOSXpB0q8l1Uqa08H3lEka3Oo4V9Lek012zv2XpM+YWb8455Y45wqccwX9+7PdAUDX2l9Tr/019b5jnD/KiqU1j0i1lVLmwNjrmkdi4wA6jdoCwIdOreA5545Imm9mvdpdN3cqGySNMLM8SeWSbpU0s/UEM/srSX92zjkz+6ykbpIqO50eAND1SpZKaZlSWvO9tT59LVnKKh4AAOe5Tq3gmdnnzWyrmm+QYmbjzeyfTvU9zrlGSXMlrZa0TdKvnXNbzGy2mc1unvZlSX80sxLFtn/e4pzjRisA4FPVbql7Rtux7hmxcQAAcF7r7DV4P5U0XdKrkuSce6/5mrlTcs6tkrSq3djiVl8/JumxTqcFAEQve2hsW2Za1l/G6mti4wAA4LzW6YezOOf2tBtq6uIsAOBFj24p6tEtpeOJyWLCTKnukFRXLbnjsde6Q7FxAJ1GbQHgQ2dX8PaY2eclOTPrJulexbZdAkDC+/xfnXBvp+SWmy9Nva/tXTQn38P1d8BporYA8KGzDd5sSf+o2HPsyiT9pzq+iyYAIFHl5tPQAQCQgE7Z4JnZY86570ua6py77RxlAoBzqnj3AUlS/tA+npMACAm1BYAPHV2D9wUzS5W04FyEAQAfDh5p0MEjDb5jAAgMtQWADx1t0fwPSfsl9TSzQ5JMkvv01TmXGXE+AAAAAEAndbSCd79zLkvSa865TOdcRuvXcxEQAAAAANA5HTV465pfD0UdBAAAAABwdjraotnNzG6X9Hkzu7n9Sefc8mhiAcC5k5HW2RsKA0DnUVsA+NBR5Zkt6TZJ2ZL+tt05J4kGD0DC+9zwvr4jAAgQtQWAD6ds8Jxzb0t628yKnHP/fI4yAQAAAADOwCmvwTOz70mSc+6fzeyr7c79KMpgAHCu/KG0Un8orfQdA0BgqC0AfOjoJiu3tvq6/bPwZnRxFgDwoqauUTV1jb5jAAgMtQWADx1dg2cn+TreMQAASDZlxVLJUqlqt5Q9VJowU8rN950KAJJWRyt47iRfxzsGAADJpKxYWvOIVFspZQ6Mva55JDYOAPCioxW88WZ2SLHVuvTmr9V8nBZpMgDAOfHC3ZN9R0CiKlkqpWVKaVmx409fS5ayigcAnnR0F82UcxUEAHzp3TPVdwQgIazYWK6NH1bpWNNxXfHoW3opc7suzs1rO6l7Rmy7JqgtALzgCZwAkl7+0D6+IwDnvRUby7Vg+WYdazouSSqvqtVbR9N09YWfKHfgxX+ZWF8TuxYP1BYAXnR0DR4AAIAWrt6u2oamNmPLGq5S2UcfS3XVkjsee607FLvRCgDACxo8AEnvnZ379c7O/b5jAOe1vVW1J4xtcn+lH9fdLKX3lQ59FHudeh/X3zWjtgDwgS2aAJLe0WNNHU8Cktyg7HSVx2ny9meNlW78Xx4Snf+oLQB8YAUPAAB0aN70kUpPbXvvtfTUFM2bPtJTIgBAPKzgAQCADhVOzJEkfe/FTTrWdFw52emaN31kyzgA4PxAgwcAADqlcGKOnl//oSSenwgA5ysaPABJr19Gd98RAASI2gLABxo8AElvwuBs3xEABIjaAsAHbrICAAAAAIGgwQOQ9H63o0K/21HhOwaAwFBbAPjAFk0ASa++4bjvCAACRG0B4EOkK3hmNsPMtpvZTjObH+f8bWa2qfnXO2Y2Pso8AAAAABCyyBo8M0uR9KSkGySNkvR3Zjaq3bQPJF3jnBsn6YeSlkSVBwAAAABCF+UK3iRJO51zpc65Y5KWSbqp9QTn3DvOuYPNh7+XlBthHgAAAAAIWpTX4OVI2tPquEzS504x/79L+vcI8wBAXBdnpfmOACBA1BYAPkTZ4FmcMRd3otlUxRq8K09yfpakWZI0ZMiQrsoHAJKkMTlZviMACBC1BYAPUW7RLJM0uNVxrqS97SeZ2ThJv5B0k3OuMt4bOeeWOOcKnHMF/fv3jyQsAAAAACS6KBu8DZJGmFmemXWTdKukV1tPMLMhkpZL+rpz7k8RZgGAk1qz/ROt2f6J7xgAAkNtAeBDZFs0nXONZjZX0mpJKZKecc5tMbPZzecXS3pQUl9J/2RmktTonCuIKhMAxNPUFHf3OACcFWoLAB8ifdC5c26VpFXtxha3+vouSXdFmQEAAAAAkkWkDzoHAAAAAJw7NHgAAAAAEIhIt2gCQCLI6Z3uOwKAAFFbAPhAgwcg6V06MNN3BAABorYA8IEtmgAAAAAQCBo8AEnvja379MbWfb5jAAgMtQWADzR4AAAAABAIrsEDAACd9sLdk31HAACcAit4AAAAABAIGjwAAAAACARbNAEkvaF9e/iOACBA1BYAPtDgAUh6IwZk+I4AIEDUFgA+sEUTQNJrbDquxqbjvmMACAy1BYAPNHgAkt7a7RVau73CdwwAgaG2APCBBg8I1C1Pr9MtT6/zHQMAAADnEA0eAAAAAASCBg8AAAAAAkGDBwAAAACB4DEJAJLe8P49fUcAEKBkri0rNpZr4ert2ltVq0HZ6Zo3faQKJ+ZIZcVSyVKpareUPVSaMFPKzfcdFwgKDR6ApDe8fy/fEQAEKFlry4qN5VqwfLNqG5okSeVVtVqwfLOyD2zSlL0/l9IypcyBUm2ltOYRaep9NHlAF2KLJoCkV9fQpLrmDyIA0FWStbYsXL29pbn7VG1DkyrfeTbW3KVlSXZB7DUtM7aiB6DL0OABSHpv79ivt3fs9x0DQGCStbbsraqNO97n2EdS94y2g90zYts1AXQZGjwAAAB0mUHZ6XHHD3QbKNXXtB2sr4ldiwegy9DgAQAAoMvMmz5S6akpbcbSU1PU9/PflOoOSXXVkjsee607FLvRCoAuw01WAAAA0GUKJ+ZI0gl30ZwyMUcqu6jtXTQn38MNVoAuRoOXQG55ep0k6YW7J3tOAgAAcHKFE3NaGr02cvNp6ICI0eABSHojBiTnrcwBRIvaAsAHGjwASW9o3+R9GDGA6FBbAPjATVYAJL0j9Y06Ut/oOwaAwFBbAPgQaYNnZjPMbLuZ7TSz+XHO/7WZrTOzejP7bpRZAOBk1v25Uuv+XOk7BoDAUFsA+BDZFk0zS5H0pKTrJJVJ2mBmrzrntraadkDSvZIKo8oBAAAAAMkiyhW8SZJ2OudKnXPHJC2TdFPrCc65T5xzGyQ1RJgDAAAAAJJClA1ejqQ9rY7LmscAAAAAABGIssGzOGPujN7IbJaZFZlZUUVFxVnGAgAAAIAwRfmYhDJJg1sd50raeyZv5JxbImmJJBUUFJxRkwgAJ/PXAzN8RwAQIGoLAB+ibPA2SBphZnmSyiXdKmlmhD8PAM5Ibu8eviMACBC1BYAPkTV4zrlGM5srabWkFEnPOOe2mNns5vOLzexiSUWSMiUdN7P/LWmUc+5QVLkAoL3q2th9nrLSUz0nARASagsAH6JcwZNzbpWkVe3GFrf6+mPFtm4CgDcbPjggSZo2aoDnJABCQm0B4EOkDzoHAAAAAJw7NHgAAAAAEAgaPAAAAAAIBA0eEKAVG8u18cMq/eGDA7ri0be0YmO570gAAAA4ByK9yQqAc2/FxnItWL5Zx5qOS5LKq2q1YPlmSVLhxByf0c5bY3KyfEcAECBqCwAfWMEDArNw9XbVNjS1GattaNLC1ds9JTr/XZyVpouz0nzHABAYagsAH2jwgMDsrao9rXFIB48c08Ejx3zHABAYagsAH2jwgMAMyk4/rXFIxbsPqnj3Qd8xAASG2gLABxo8IDDzpo9UempKm7H01BQ9clm9tPI70r9+JfZaVuwpIQAAAKJCg5foyor50I42Cifm6Mc3j1W3lNj/3jnZ6XpqitOUvT+XaiulzIGx1zWP8PcFAAAgMDR4iaysOPYhnQ/taKdwYo4mDsnW5/L66P/Nv1ZTat+Q0jKltCzJLoi9pmVKJUt9RwUAAEAXosFLZCVL+dCOzqnaLXXPaDvWPSM2DgAAgGDwHLxEVrU7tnLXGh/aEU/20NgKb1qrZzLV18TGofGDs31HABAgagsAH1jBS2TZQ2Mf0lvjQzvimTBTqjsk1VVL7njste5QbBzqn9Fd/TO6+44BIDDUFgA+0OAliBUby7Xxwyr94YMDuuLRt7RiYzkf2tF5ufnS1Puk9L7SoY9ir1Pvi41DFTX1qqip9x0DQGCoLQB8YItmAlixsVwLlm/WsabjkqTyqlotWL5ZunmsCqfeF7vmrmp3bOVu8j18aEd8ufn83TiJ9/ZUSZKmjRrgNwiAoFBbAPhAg5cAFq7ertqGpjZjtQ1NWrh6uwrnX8uHdgAAAACS2KKZEPZW1Z7WOAAAAIDkRIOXAAZlp5/WOAAAAIDkRIOXAOZNH6n01JQ2Y+mpKZo3faSnRAAAAADOR1yDlwAKJ+ZIkr734iYdazqunOx0zZs+smUcwNnJH9rbdwQAAaK2APCBBi9BFE7M0fPrP5QkvXD3ZM9pgLD07tnNdwQAAaK2APCBLZoAkt7H1XX6uLrOdwwAgaG2APCBFTwASe+P5dWSpIuz0jwnARASagsAH1jBAwAAAIBA0OABAAAAQCBo8AAAAAAgEDR4AAAAABCISBs8M5thZtvNbKeZzY9z3sxsUfP5TWb22SjzAEA8l+X10WV5fXzHABAYagsAHyK7i6aZpUh6UtJ1ksokbTCzV51zW1tNu0HSiOZfn5P0VPMrAJwzWempviMACBC1BYAPUa7gTZK00zlX6pw7JmmZpJvazblJ0i9dzO8lZZvZwAgzAcAJyg4eVdnBo75jAAgMtQWAD1E2eDmS9rQ6LmseO905ABCp9z+q0fsf1fiOASAw1BYAPkTZ4FmcMXcGc2Rms8ysyMyKKioquiQcAAAAAIQmygavTNLgVse5kvaewRw555Y45wqccwX9+/fv8qAAAAAAEIIoG7wNkkaYWZ6ZdZN0q6RX2815VdI3mu+mebmkaufcRxFmAgAAAIBgRXYXTedco5nNlbRaUoqkZ5xzW8xsdvP5xZJWSfqCpJ2Sjkq6I6o8AAAAABC6yBo8SXLOrVKsiWs9trjV107SnCgzAMnqhbsn+46QMCZ/pq/vCAACRG0B4EOkDR4AJIKe3SmFALoetQWAD1FegwcACWF35RHtrjziOwaAwFBbAPjAPy0BSHo79h2WJA3t29NzEgAhobYA8IEVPAAAAAAIBA0eAAAAAASCBg8AAAAAAkGDBwAAAACB4CYrAJLelSP6+Y4AIEDUFgA+0OABSHppqSm+IwAIELUFgA9s0QSQ9EorDqu04rDvGAACQ20B4AMNHoCkV1pxRKUVPIwYQNeitgDwgS2aCeSFuyf7jgAAAADgPMYKHgAAAAAEggYPAAAAAAJBgwcAAAAAgeAaPABJb8rI/r4jAAgQtQWADzR4AJLehSlsZgDQ9agtAHyg8gBIejv21WjHvhrfMQAEhtoCwAcaPABJb3flUe2uPOo7BoDAUFsA+ECDBwAAAACBoMEDAAAAgEDQ4AEAAABAIGjwAAAAACAQ5pzzneG0mFmFpN2+cyBh9JO033cIAMGhtgCIArUFnTXUORf3YZsJ1+ABp8PMipxzBb5zAAgLtQVAFKgt6Aps0QQAAACAQNDgAQAAAEAgaPAQuiW+AwAIErUFQBSoLThrXIMHAAAAAIFgBQ8AAAAAAkGDBwAAAACBoMEDAAAAgEDQ4CEoZpZiZv9oZlvMbLOZDfedCUDio7YAiAK1BVGgwUNoFkgqdc6NlrRI0rc85wEQBmoLgChQW9DlLvQdAOgqZtZT0pecc/nNQx9I+qLHSAACQG0BEAVqC6JCg4eQTJM02MxKmo/7SHrDXxwAgaC2AIgCtQWRYIsmQjJB0oPOuQnOuQmS/lNSiZn1NLPnzOznZnab14QAEtEExa8tw83sn83sRa/pACSqCYpfWwqbP7O8YmbXe02IhESDh5D0lnRUkszsQknXS/qNpJslveic+x+S/pu/eAASVNza4pwrdc79d6/JACSyk9WWFc2fWb4p6RZ/8ZCoaPAQkj9Jurz5629Les0594GkXEl7msebfAQDkNBOVlsA4Gx0VFvul/TkOU+FhEeDh5A8L+mzZrZT0jhJ/6d5vEyxJk/i7zyA03ey2gIAZyNubbGYxyT9u3PuXZ8BkZjMOec7AxCp5rtUPSGpTtLbzrlfeY4EIABm1lfSI5Kuk/QL59yPPUcCEAAzu1fS7ZI2SCpxzi32HAkJhgYPAAAAAALBdjUAAAAACAQNHgAAAAAEggYPAAAAAAJBgwcAAAAAgaDBAwAAAIBA0OABAAAAQCBo8AAAAAAgEDR4AAAAABAIGjwAAAAACMT/B1HSZiIhWdHSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -728,7 +729,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAFgCAYAAABNIolGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAySklEQVR4nO3de7hdZX0v+u+bCwmXJIRLkBAwZFc93EIskepuqyAXQauwt9tocXvBosdHKPt42CK7IiBlt9pa3c2RVqkX8HjBFKqo6HZD1BZOqRhsGmSjYDFCACEEiCAkJOQ9f8xFClnJzGWurDHWnJ/P84xnzjHmWHP8Ruab75rzt8YYs9RaAwAAANBm45ouAAAAAGBrNDAAAACA1tPAAAAAAFpPAwMAAABoPQ0MAAAAoPUmNF1AN/vss0+dPXt202XAyFu3rnM7cWKzdUCShx5fmyTZZ49JDVcCQ2QkLSMnaR05SZ+75ZZbHqq17rvp8lY3MGbPnp0lS5Y0XQZAX/ubf7grSfLOl89puBKAdpKTAKOrlPKLzS13CgkAAADQehoY0IR//dfOBMBwMhKgOznJgGr1KSTQt55+uukKANpLRgJ0JycZUBoYAAAA9L1169ZlxYoVWbNmTdOlMGTy5MmZNWtWJm7jBWk1MAAAAOh7K1asyJQpUzJ79uyUUpouZ+DVWrNq1aqsWLEiBx988Db9jGtgAAAA0PfWrFmTvffeW/OiJUop2XvvvbfriBhHYEATpkxpugKA9pKRAN3JyR2medEu2/t6aGBAE/bfv+kKANpLRgJ0JycZUE4hAQAAgFHwwAMP5LTTTsucOXNy1FFH5WUve1m++tWvjmoNy5cvz+GHH/6cZbfeemvmzZuXefPmZa+99srBBx+cefPm5fjjj9/m5/zSl760cf7yyy/PWWedNaJ1JxoY0Iw77+xMAAwnIwG6k5Oj5sFfrcmCT92UBx/r/ZtLaq059dRT8/KXvzx33XVXbrnlllx55ZVZsWLFsHXXr1/f8/a2xxFHHJGlS5dm6dKled3rXpc///M/z9KlS3P99ddvU02bNjB2Fg0MaEKtnQmA4WQkQHejlZPLFiUfPzy5aM/O7bJFO3+bLbNw8Z354fKHs/D63htG3/3ud7PLLrvk3e9+98Zlz3/+8/OHf/iHSTpHLbzhDW/Ia1/72px44ol5+OGHc+qpp2bu3Ll56UtfmmXLliVJLrroonz0ox/d+ByHH354li9fnuXLl+eQQw7JO9/5zhx22GE58cQT8+STTyZJbrnllhx55JF52ctelksvvXSbaz7mmGPyR3/0R3nFK16Rv/zLv8zb3/72XHXVVRsf32OPPZIk5513Xm644YbMmzcvH//4x5Mk9913X0466aS84AUvyLnnnruD/2rPpYEBAADAcy1blHzj7GT1PUlq5/YbZw9ME+NF5387s8+7Nl/4wd2pNfnCD+7O7POuzYvO//YOP+dtt92W3/zN3+y6zk033ZQrrrgi3/3ud3PhhRfmxS9+cZYtW5Y/+ZM/yVvf+tatbuPOO+/MmWeemdtuuy177rlnrr766iTJ6aefnoULF+amm27a7rofffTR/P3f/33OOeecLa7z4Q9/OL/7u7+bpUuX5r3vfW+SZOnSpfnKV76SW2+9NV/5yldyzz33bPe2N6WBAQAAwHMtvjhZ9+Rzl617srN8ANxw7rF53byZmTyx85F58sRxOWXezNzw/mNHbBtnnnlmjjzyyLzkJS/ZuOyEE07IXnvtlSS58cYb85a3vCVJ8spXvjKrVq3K6tWruz7nM9euSJKjjjoqy5cvz+rVq/Poo4/mFa94RZJsfM5t9cY3vnG71n/Gcccdl2nTpmXy5Mk59NBD84tf/GKHnufZNDAAAAB4rtXDr8vQdXmfmTF1cqZMmpC16zdk0oRxWbt+Q6ZMmpAZUybv8HMedthh+dGPfrRx/tJLL83ixYuzcuXKjct23333jffrZk4TKqVkwoQJ2bBhw8Zla9b82/U5Jk2atPH++PHjs379+tRae/r62GfX9Oxt11rz1FNPbfHnNldLrzQwoAnTpnUmAIaTkQDdjUJO3lv33q7l/eihx9fmzb/1/Hz1Pb+dN//W87Py8bU9Pd8rX/nKrFmzJn/913+9cdkTTzyxxfVf/vKX54tf/GKS5Pvf/3722WefTJ06NbNnz97YCPnRj36Un//85123u+eee2batGm58cYbk2Tjc+6I2bNn55ZbbkmSXHPNNVm3bl2SZMqUKXnsscd2+Hm31YSdvgVguP32a7oCgPaSkQDdjUJO7vHqi/PU/3xvdqn/9qH9qTIpe7x6ME4hSZJPvWX+xvuXnHp4lzW3TSklX/va1/Le9743f/Znf5Z99903u+++ez7ykY9sdv2LLroop59+eubOnZvddtstV1xxRZLk9a9/fT7/+c9n3rx5eclLXpIXvvCFW9325z73ubzjHe/Ibrvtlle96lU7vA/vfOc7c8opp+Too4/Occcdt/HojLlz52bChAk58sgj8/a3vz3Tp0/f4W10UzZ3WEpbzJ8/vy5ZsqTpMgD62t/8w11Jkne+fE7DlQC0k5xkUC36zF/k39/9V5mZVbkve+cfD3pPFvzBli/k2Ha33357DjnkkKbLYBObe11KKbfUWudvuq4jMKAJd9zRud2GbinAwJGRAN2NUk4u3uUVWfbiV+W0ow/Kl26+OysfW5MFO3WL0J0GBgAAAMOM9CkU0CsX8QQAAABaTwMDAAAAaD0NDAAAAKD1XAMDmrCTvlYIoC/ISIDu5OTo+dxrOrenX9tsHSRxBAY0Y999OxMAw8lIgO7k5Jg1fvz4zJs3L4cddliOPPLIfOxjH8uGDRsaqWXJkiU5++yzu64ze/bsHHHEETniiCNy6KGH5vzzz8/atWuTJMuXL08pJR/84Ac3rv/QQw9l4sSJOeuss5IkF110UT760Y+OWM0aGNCEDRs6EwDDyUiA7uTk6Fi2KFnxw+QXNyYfP7wz36Ndd901S5cuzW233Zbrrrsu3/rWt/KhD31oBIrdfvPnz8/ChQu3ut73vve93Hrrrbn55ptz11135V3vetfGx+bMmZNvfvObG+f/9m//NocddthOqTcZoQZGKeWkUspPSyk/K6Wc12W9l5RSni6l/KeR2C6MWT/7WWcCYDgZCdCdnNz5li1KvnF28nTnaIOsvqczPwJNjGfMmDEjl112WT7xiU+k1prf/d3fzdKlSzc+/tu//dtZtmxZLrroorzjHe/IMccckzlz5jyn6XDqqafmqKOOymGHHZbLLrts4/I99tgj73//+3PUUUfl+OOPz80337zx57/+9a8nSb7//e/n937v95Ikjz/+eE4//fQcccQRmTt3bq6++uph9e6xxx755Cc/ma997Wt5+OGHk3QaMoccckiWLFmSJPnKV76SBQsWjNi/0aZ6bmCUUsYnuTTJyUkOTfL7pZRDt7DeR5J8p9dtAgAAwE6z+OJk3ZPPXbbuyc7yETRnzpxs2LAhDz74YM4444xcfvnlSZI77rgja9euzdy5c5MkP/nJT/Kd73wnN998cz70oQ9l3bp1SZLPfvazueWWW7JkyZIsXLgwq1atSpL8+te/zjHHHJNbbrklU6ZMyfnnn5/rrrsuX/3qV3PBBRcMq+OP//iPM23atNx6661ZtmxZXvnKV2623qlTp+bggw/OnXfeuXHZm970plx55ZVZsWJFxo8fn5kzZ47kP9FzjMQRGEcn+Vmt9a5a61NJrkxyymbW+8MkVyd5cAS2CQAAADvH6hXbt7wHtdYkyRve8IZ885vfzLp16/LZz342b3/72zeu85rXvCaTJk3KPvvskxkzZuSBBx5IkixcuDBHHnlkXvrSl+aee+7Z2FjYZZddctJJJyVJjjjiiLziFa/IxIkTc8QRR2T58uXDarj++utz5plnbpyf3uVCsc/U+4yTTjop1113Xb785S/njW984w79G2yrkWhgHJDknmfNrxhatlEp5YAk/yHJJ0dgewAAALDzTJu1fct30F133ZXx48dnxowZ2W233XLCCSfkmmuuyaJFi3LaaadtXG/SpEkb748fPz7r16/P97///Vx//fW56aab8i//8i958YtfnDVr1iRJJk6cmFJKkmTcuHEbf37cuHFZv379sDpqrRvX7+axxx7L8uXL88IXvnDjsl122SVHHXVU/uIv/iKvf/3rd+wfYhuNRANjc3tZN5n/H0neX2t9eqtPVsq7SilLSilLVq5cOQLlAQAAwHY47oJk4q7PXTZx187yEbJy5cq8+93vzllnnbWxeXDGGWfk7LPPzkte8pLstddeXX9+9erVmT59enbbbbf85Cc/yT/90z/tcC0nnnhiPvGJT2ycf+SRR4at8/jjj+c973lPTj311GFHaJxzzjn5yEc+kr333nuHa9gWI9HAWJHkwGfNz0py3ybrzE9yZSlleZL/lOSvSimnbu7Jaq2X1Vrn11rn7+urgehXe+/dmQAYTkYCdCcnd765C5LXLkzGDx35MO3Azvzc3i5Q+eSTT278GtXjjz8+J554Yi688MKNjx911FGZOnVqTj/99K0+10knnZT169dn7ty5+eAHP5iXvvSlO1zX+eefn0ceeSSHH354jjzyyHzve9/b+Nixxx6bww8/PEcffXQOOuigfOpTnxr284cddlje9ra3bfa5L7nkksyaNWvj1Iuy6fkr2/0EpUxIckeS45Lcm+SHSU6rtd62hfUvT/LNWutVW3vu+fPn12euZgrAzvE3/3BXkuSdL5/TcCUA7SQnoT/cfvvtOeSQQ7bvhz73ms7t6deOfEGbcd999+WYY47JT37yk4wbNyJfGtp6m3tdSim31Frnb7ruhF43VmtdX0o5K51vFxmf5LO11ttKKe8eetx1L2BTz5x3NqHn/4IA/UdGAnQnJ0fPKDUukuTzn/98PvCBD+RjH/vYwDQvtteIjPha67eSfGuTZZttXNRa3z4S24Qx7a7OX3LyrIvfADBERgJ0Jyf70lvf+ta89a1vbbqMVtPWAQAAYCD0egkFRtb2vh4aGAAAAPS9yZMnZ9WqVZoYLVFrzapVqzJ58uRt/hknTQEAAND3Zs2alRUrVmTlypVNl8KQyZMnb9c3k2hgAAAA0PcmTpyYgw8+uOky6IEGBjRh332brgCgvWQkQHdykgGlgQFNmD696QoA2ktGAnQnJxlQLuIJTXjqqc4EwHAyEqA7OcmA0sCAJixf3pkAGE5GAnQnJxlQGhgAAABA62lgAAAAAK2ngQEAAAC0ngYGAAAA0Hq+RhWasN9+TVcA0F4yEqA7OcmA0sCAJkyb1nQFAO0lIwG6k5MMKKeQQBPWrOlMAAwnIwG6k5MMKA0MaMLdd3cmAIaTkQDdyUkGlAYGAAAA0HoaGAAAAEDraWAAAAAAraeBAQAAALSer1GFJjzveU1XANBeMhKgOznJgNLAgCZMndp0BQDtJSMBupOTDCinkEATnniiMwEwnIwE6E5OMqA0MKAJK1Z0JgCGk5EA3clJBpQGBgAAANB6GhgAAABA62lgAAAAAK2ngQEAAAC0nq9RhSbMnNl0BQDtJSMBupOTDCgNDGjCHns0XQFAe8lIgO7kJAPKKSTQhMcf70wADCcjAbqTkwyoEWlglFJOKqX8tJTys1LKeZt5/M2llGVD0z+WUo4cie3CmHXffZ0JgOFkJEB3cpIB1XMDo5QyPsmlSU5OcmiS3y+lHLrJaj9P8opa69wkf5zksl63CwAAAAyOkTgC4+gkP6u13lVrfSrJlUlOefYKtdZ/rLU+MjT7T0lmjcB2AQAAgAExEg2MA5Lc86z5FUPLtuQPknx7Sw+WUt5VSllSSlmycuXKESgPAAAAGOtGooFRNrOsbnbFUo5Np4Hx/i09Wa31slrr/Frr/H333XcEygMAAADGupH4GtUVSQ581vysJMOuKFNKmZvk00lOrrWuGoHtwtg1y1lUAFskIwG6k5MMqJE4AuOHSV5QSjm4lLJLkjcl+fqzVyilHJTk75K8pdZ6xwhsE8a23XbrTAAMJyMBupOTI+LBX63Jgk/dlAcfW9N0KSOuX/et5wZGrXV9krOSfCfJ7UkW1VpvK6W8u5Ty7qHVLkiyd5K/KqUsLaUs6XW7MKb96ledCYDhZCRAd3JyRCxcfGd+uPzhLLz+zqZLGXH9um8jcQpJaq3fSvKtTZZ98ln3z0hyxkhsC/rCL3/ZuZ06tdk6ANpIRgJ0Jyd78qLzv51XbfiHnDthUS7e5aHc98/75OwfLsh3xr08P73k5KbL68mLzv921q7fsHH+Cz+4O1/4wd2ZNGHcmN+3ZIQaGAAAADAW3Pzah7Pr//xMdqlrkySzykP56KTP5I9PPrzhynp3w7nH5ttfXpjj7/tk9s+q3J99snjm/5mTTju76dJGxEhcAwMAAADGhGn/+KcbmxfP2KWuzbT/708bqmjkzFj+9fz+Lz+aA8qqjCvJAeWhvOmXH82Mn3996z88BmhgAAAAMDhWr9i+5WPJ4os325zJ4osbKmhkaWAAAAAwOKZt4Wtot7R8LOnn5kw0MKAZBx3UmQAYTkYCdCcne3PcBcnEXZ+7bOKuneVjXT83Z6KBAc2YPLkzATCcjAToTk72Zu6C5LULk/GTOvPTDuzMz13QbF0joZ+bM/EtJNCM1as7t9OmNVsHQBvJSIDu5GTv5i7oj4bFpp7Zp8UXd04bmTar07zok33VwIAmPPBA59YvHYDhZCRAd3KSbvq1OROnkAAAAABjgAYGAAAA0HoaGAAAAEDraWAAAAAArecintCE2bObrgCgvWQkQHdykgGlgQFJ8rnXdG5Pv3Z0trfLLqOzHYCxaLQzcrR/BwD0yntJBpRTSNh2n3vNv73JozePPNKZ6I0xCf1JRgJ0JycZUI7AGGn+isO2WLmyczt9erN1ALSRjAToTk4yoByBAQAAALSeBgZAGzk9BgAAnkMDAwBGisYTAMBOo4EBAAAAtJ6LeEIT5sxpugKA9pKRAN3JSQaUBgY0YYL/egBbJCMBupOTDCinkEATVq3qTAAMJyPZGtebYdDJSQaUBgY0wS8dgC0bzYxctihZ8cPkFzcmHz+8Mw/Qdt5LMqA0MACArevHv3gvW5R84+zk6bWd+dX3dOb7pYnRj68ZAANNAwMAGEyLL07WPfncZeue7CwHAFpHA2MkOQyVNvIXOIDNW71i+5YDAI3SwBgp/X4Yaj/TeBqbvG5Ar6bN2r7lAECjNDBGisNQx6amGk+/8RudiR2jYQj9bbQy8rgLkom7PnfZxF07ywHazHtJBpQGxkjp98NQ+/Wv3U01nsaN60zsGA1D6G+jlZFzFySvXZinx0/OhiRPT5mVvHZhZzlAm3kvyYAakVFfSjmplPLTUsrPSinnbebxUkpZOPT4slLKb47Edlulnw9D7ee/djfVeFq5sjOxY/q9YQiDbjQzcu6CXDjhvfl3a76YC+dc2VfNiwfX75YFd5+SBx9b03QpI66f9w22ifeSDKieGxillPFJLk1ycpJDk/x+KeXQTVY7OckLhqZ3JfnrXrfbOv18GGo//7W7qcbTI490JnZMPzcMh3hzPgb165FqTRiljHzR+d/O7POuzRdWH5Gaki/84O7MPu/avOj8b+/0bY+GhQ8dlR8+OTMLr7+z6VJGXD/vG2wT7yUZUCNxBMbRSX5Wa72r1vpUkiuTnLLJOqck+Xzt+Kcke5ZS9h+BbbfGixZNydm/Pj0rNuyTDbVkxYZ9cvavT8+LFk1purSebXh083/V3tLyseSch0/JE3WX5yx7ou6Scx7edAjTKv3cMEySZYsy8d5/ypUb3peJC+f6IDwW9PORan3shnOPzevmzczksi5JMnniuJwyb2ZueP+xDVfWm35uzPTzvgGwdSPRwDggyT3Pml8xtGx71xnTbjj32GTughy/7i8yZ+0Xc3z9RMrcBWP+TVCS1Kmbf6m2tHwsef/7Ppi/nfm+3Fv3zoZacm/dJ1fNfF/ef+4Hmy5txPTjX/L7uWF4zgc/kCeuPjPT86uMK8n0dQ/kiavPzDkf/EDTpdFNPx+p1sdmTJ2cKZMmZG2dkEllfdau35ApkyZkxpTJTZfWk35tzCT9vW8AbN1INDDKZpbVHVins2Ip7yqlLCmlLFk5hs7r6tc3QUky/oQL81SZ9JxlT5VJGX/ChQ1VNHJmTJ2cO2acnN9ZuzCHPHVFfuephbljxsl98bo9ox8Ps+3nhuGf7fm17Faees6y3cpT+bM9v9ZMQWwb12UZsx56fG3ePO3H+epBV+fNv/X8rHx8bdMl9ayf35P0874BsHUTRuA5ViQ58Fnzs5LctwPrJElqrZcluSxJ5s+fv9kmR1s98ybotD3/d760/7lZ2S9/8Z67IJ+/8a68/sFLs2d+lUcn7perp78jZ/TJhc769XV70fnfztr1G5IckST5wg/uzhd+cHcmTRiXn15ycrPF9Wj4G9gJffMGdvxj927Xclpi2qzOaSObW06rfeot85PPdRryl5x6eMPVjJx+/d2W9Pe+AdDdSDQwfpjkBaWUg5Pcm+RNSU7bZJ2vJzmrlHJlkt9KsrrWev8IbLtV+vVNUJKc8Z7zks/dkCSZfvq1OaPhekZSI6/bC1+40zdxw7nH5pJv3Z7/9S+/yJo6MZMnjsurDntePvCaQ3b6tkdD376B9UF4bDrugs41L559Gkk/XZdltI1CRva7fn5P8qkj70qWfyx5YG0uWfOjof9n85suC0aXnGRA9dzAqLWuL6WcleQ7ScYn+Wyt9bZSyruHHv9kkm8leXWSnyV5IsnpvW4X6G7G1Mn5nV9/N+dO/KvMLA/lvuyTf/z1ezJjyoubLm1E9O2bcx+Ex6Znjki75qzOhTynHdh5zfrkSLWN37Dy9NrON6z00771q359zbZ0wdykP/YPgK5G4giM1Fq/lU6T4tnLPvms+zXJmSOxLegLDzzQud1vv523jWWLcsqKj2TSuM6bvFl5KKes+Eiy7EBv8tqs3z8I97O5C/LgD/42Z913Qj5xxlv74pSmJM18YByNjOxn/fwhv9sFc8f6vsH2kJMMqJG4iCewvVav7kw70+KLM6k+92J0k+pa34owFsxdkMx6SfL830ne+2NvyseQfrxobiPfsDIaGflsp1/bmfpFP38rjgvmQsdo5yS0xIgcgQG0kDd5MGr6+aK5Gx5dkXGb+S6xDY+u8FeQturn/HedIICB5r0H9KstvZnzJo+mfe41namP3HDusXndvJmZXNYlSSZPHJdT5s3si6/2rVMP2K7ltEA/5/9xF3SuC/RsrhMEMDA0MKBfeZMHo2b4V/tu6J+v9j3hwjxVJj1n2VNlUsafcGFDFbFV/Zz/cxckr12YjB8ak9MO7Mw71Q5gIDiFZKT10zm07DxlM8djjzQXg4RR1bdf7Tt3QT5/4115/YOXZs/8Ko9O3C9XT39HztiZWTIaGdnP+j3/5y5Ibrmic9/7LgaVnGRAaWBAE17wgtHZjjd5MGr69qt9k5zxnvOSz92QJJl++rU5Y2dvcLQysp/Jf+hvcpIB5RQSAAAAoPUcgQFNuP/+zu3++zdbx1jnr4rQn2QkQHdykgGlgQHJ6H8Qfuyxzq1fOgDDyUiA7uQkA8opJAAAAEDrOQKDbedwfQAAABqigQEAI0WjFwBgp3EKCTRh/PjOBINm2aI8vWJJNvzixjz9F4clyxY1XRFtJCMBupOTDChHYEAT/t2/a7oCGH3LFiXfODvjn17TmX9sRfKNszv35y5ori7aR0YCdCcnGVCOwABoo9Ov7bvTEe69+r8l65587sJ1T3aWAwDAVjgCA5pw772d2wMO2Pnb6rMPwYxdM8uq7VrOABvNjAQYi+QkA0oDA5rw6183XQGMujJtVrL6ns0vh2eTkWyN5jyDTk4yoDQwABgdx12QtV89K5Pq2o2L1pZJmXTcBQ0WxTbzgXHs8ZoB0GdcAwOA0TF3QSb9h08k4yd15qcd2Jl3AU8AALaBIzAAGD1zFyS3XNG576/DAABsBw0MaMLEiU1XANBeMhKgOznJgNLAgCYcfHDTFQC0l4wE6E5OMqBcAwMAAABoPQ0MaMI993QmAIaTkQDdyUkGlFNIoAlPPtl0BQDtJSMBupOTDChHYAAAAACtp4EBAAAAtJ4GBgAAANB6roEBTZg0qekKANpLRgJ0JycZUBoY0ITnP7/pCqA5p1/bdAW0nYwE6E5OMqCcQgIAAAC0Xk8NjFLKXqWU60opdw7dTt/MOgeWUr5XSrm9lHJbKeW/9LJN6Au/+EVnAmA4GQnQnZxkQPV6BMZ5SRbXWl+QZPHQ/KbWJzmn1npIkpcmObOUcmiP24Wxbe3azgTAcDISoDs5yYDqtYFxSpIrhu5fkeTUTVeotd5fa/3R0P3Hktye5IAetwsAAAAMkF4bGPvVWu9POo2KJDO6rVxKmZ3kxUl+0GWdd5VSlpRSlqxcubLH8gAAAIB+sNVvISmlXJ/keZt56APbs6FSyh5Jrk7yf9Vaf7Wl9WqtlyW5LEnmz59ft2cbAAAAQH/aagOj1nr8lh4rpTxQStm/1np/KWX/JA9uYb2J6TQvvlhr/bsdrhb6xa67Nl0BQHvJSIDu5CQDaqsNjK34epK3Jfnw0O01m65QSilJPpPk9lrrx3rcHvSHAw9sugKA9pKRAN3JSQZUr9fA+HCSE0opdyY5YWg+pZSZpZRvDa3z20nekuSVpZSlQ9Ore9wuAAAAMEB6OgKj1roqyXGbWX5fklcP3b8xSellO9B3fv7zzu3BBzdbB0AbyUiA7uQkA6rXU0iAHbFuXdMVALSXjAToTk4yoHo9hQQAAABgp9PAAAAAAFpPAwMAAABoPdfAgCbsvnvTFQC0l4wE6E5OMqA0MKAJBxzQdAUA7SUjAbqTkwwop5AAAAA73YO/WpMFn7opDz62pulSRlw/7xu0iQYGNOFf/7UzATCcjIS+tHDxnfnh8oez8Po7my5lxI36vslJBpRTSKAJTz/ddAUA7SUjoa+86PxvZ+36DRvnv/CDu/OFH9ydSRPG5aeXnNxgZb1rbN/kJAPKERgAAMBOc8O5x+Z182Zm8sTOR4/JE8fllHkzc8P7j224st71875BG2lgAAAAO82MqZMzZdKErF2/IZMmjMva9RsyZdKEzJgyuenSetbP+wZt5BQSAABgp3ro8bV58289P6cdfVC+dPPdWdlHF7s8+P5r86NJl2bP/CqP7rpfrr7/HUmOaLos6EsaGNCEKVOargCgvWQk9J1PHXlXcs1ZydK1uWTagclxFySZ33RZvVu2KGc88j+SPJkkmb7ugc78sjnJ3AU7b7tykgGlgQFN2H//pisAaC8ZCf1l2aLkG2cnT6/tzK++pzOf7NwP+aNh8cXJuiefu2zdk53lO3Pf5CQDyjUwAACAnafbh/yxbvWK7VsO9EQDA5pw552dCYDhZCT0l37+kD9t1vYtHylykgGlgQFNqLUzATCcjIT+0tSH/NFw3AXJxF2fu2zirkPX+NiJ5CQDSgMDAADYeZr6kD8a5i5IXrswmXZgktK5fe3CsX9tD2gpF/EEAAB2nmc+zC++uHPayLRZneZFv3zIn7ugf/YFWk4DAwAA2Ll8yAdGgAYGNGHatKYrAGgvGQnQnZxkQGlgQBP226/pCgDaS0YCdCcnGVAu4gkAAAC0ngYGNOGOOzoTAMPJSIDu5CQDSgMDAAAAaD0NDAAAAKD1NDAAAACA1tPAAAAAAFrP16hCE6ZPb7oCgPaSkQDdyUkGlAYGNGHffZuuAKC9ZCRAd3KSAdXTKSSllL1KKdeVUu4cut1iK7CUMr6U8s+llG/2sk3oCxs2dCYAhpORAN3JSQZUr9fAOC/J4lrrC5IsHprfkv+S5PYetwf94Wc/60wADCcjAbqTkwyoXhsYpyS5Yuj+FUlO3dxKpZRZSV6T5NM9bg8AAAAYQL02MPartd6fJEO3M7aw3v9Icm6SrR7nVEp5VyllSSllycqVK3ssDwAAAOgHW72IZynl+iTP28xDH9iWDZRSfi/Jg7XWW0opx2xt/VrrZUkuS5L58+fXbdkGAAAA0N+22sCotR6/pcdKKQ+UUvavtd5fStk/yYObWe23k7yulPLqJJOTTC2lfKHW+p93uGoAAABgoPR6CsnXk7xt6P7bklyz6Qq11v9Wa51Va52d5E1Jvqt5wcDbe+/OBMBwMhKgOznJgNrqERhb8eEki0opf5Dk7iRvSJJSyswkn661vrrH54f+5BcOwJbJSIDu5CQDqqcGRq11VZLjNrP8viTDmhe11u8n+X4v24S+sH5953ZCrz1EgD4kIwG6k5MMqF5PIQF2xF13dSYAhpORAN3JSQaUBgYAAADQehoYAAAAQOtpYAAAAACtp4EBAAAAtJ7L1kIT9t236QoA2ktGAnQnJxlQGhjQhOnTm64AoL1kJEB3cpIB5RQSaMJTT3UmAIaTkQDdyUkGlAYGNGH58s4EwHAyEqA7OcmA0sAAAAAAWk8DAwAAAGg9DQwAAACg9TQwAAAAgNbzNarQhP32a7oCgPaSkQDdyUkGlAYGNGHatKYrAGgvGQnQnZxkQDmFBJqwZk1nAmA4GQnQnZxkQGlgQBPuvrszATCcjAToTk4yoDQwAAAAgNbTwAAAAABaTwMDAAAAaD0NDAAAAKD1fI0qNOF5z2u6AoD2kpEA3clJBpQGBjRh6tSmKwBoLxkJ0J2cZEA5hQSa8MQTnQmA4WQkQHdykgGlgQFNWLGiMwEwnIwE6E5OMqA0MAAAAIDW08AAAAAAWk8DAwAAAGg9DQwAAACg9XyNKjRh5symKwBoLxkJ0J2cZEBpYEAT9tij6QoA2ktGAnQnJxlQPZ1CUkrZq5RyXSnlzqHb6VtYb89SylWllJ+UUm4vpbysl+3CmPf4450JgOFkJEB3cpIB1es1MM5LsrjW+oIki4fmN+cvk/zPWuv/keTIJLf3uF0Y2+67rzMBMJyMBOhOTjKgem1gnJLkiqH7VyQ5ddMVSilTk7w8yWeSpNb6VK310R63CwAAAAyQXhsY+9Va70+SodsZm1lnTpKVST5XSvnnUsqnSym7b+kJSynvKqUsKaUsWblyZY/lAQAAAP1gqw2MUsr1pZQfb2Y6ZRu3MSHJbyb561rri5P8Ols+1SS11stqrfNrrfP33XffbdwEAAAA0M+2+i0ktdbjt/RYKeWBUsr+tdb7Syn7J3lwM6utSLKi1vqDofmr0qWBAQAAALCpXr9G9etJ3pbkw0O312y6Qq31l6WUe0opL6q1/jTJcUn+d4/bhbFt1qymKwBoLxkJ0J2cZED12sD4cJJFpZQ/SHJ3kjckSSllZpJP11pfPbTeHyb5YilllyR3JTm9x+3C2Lbbbk1XANBeMhKgOznJgOqpgVFrXZXOERWbLr8vyaufNb80yfxetgV95Ve/6txOndpsHQBtJCMBupOTDKhej8AAdsQvf9m59UsHYDgZCdCdnGRA9fo1qgAAAAA7nQYGAAAA0HoaGAAAAEDraWAAAAAArecintCEgw5qugKA9pKRAN3JSQaUBgY0YfLkpisAaC8ZCdCdnGRAOYUEmrB6dWcCYDgZCdCdnGRAOQIDmvDAA53badOarQOgjWQkQHdykgHlCAwAAACg9TQwAAAAgNbTwAAAAABaTwMDAAAAaD0X8YQmzJ7ddAUA7SUjAbqTkwwoDQxowi67NF0BQHvJSIDu5CQDyikk0IRHHulMAAwnIwG6k5MMKEdgQBNWruzcTp/ebB0AbSQjAbqTkwwoR2AAAAAAraeBAQAAALSeBgYAALTBskXJxw9PLtqzc7tsUdMVAbSKa2AAAEDTli1KvnF2su7JzvzqezrzSTJ3QXN1AbSIBgY0Yc6cpisAaC8ZySBafPG/NS+ese7JznINDDYlJxlQGhjQhAn+6wFskYxkEK1esX3LGWxykgHlGhjQhFWrOhMAw8lIBtG0Wdu3nMEmJxlQGhjQBL90ALZMRjKAznn4lDxRd3nOsifqLjnn4VMaqohWk5MMKA0MAABo2Pvf98H87cz35d66TzbUknvrPrlq5vvy/nM/2HRpAK3h5CkAAGjYjKmTc8eMk3PR8sOyy/hxeerpDXnzjIPy1imTmy4NoDU0MAAAoAUeenxt3vxbz89pRx+UL918d1Y+tqbpkgBaRQMDAABa4FNvmb/x/iWnHt5gJQDtpIEBTfiN32i6AoD2kpEA3clJBlRPF/EspexVSrmulHLn0O30Laz33lLKbaWUH5dSvlxKcTIfg23cuM4EwHAyEqA7OcmA6nXUn5dkca31BUkWD80/RynlgCRnJ5lfaz08yfgkb+pxuzC2rVzZmQAYTkYCdCcnGVC9NjBOSXLF0P0rkpy6hfUmJNm1lDIhyW5J7utxuzC2PfJIZwJgOBkJ0J2cZED12sDYr9Z6f5IM3c7YdIVa671JPprk7iT3J1lda/1fW3rCUsq7SilLSilLVuoqAgAAANmGBkYp5fqha1dsOp2yLRsYui7GKUkOTjIzye6llP+8pfVrrZfVWufXWufvu+++27ofAAAAQB/b6reQ1FqP39JjpZQHSin711rvL6Xsn+TBzax2fJKf11pXDv3M3yX590m+sIM1AwAAAAOm11NIvp7kbUP335bkms2sc3eSl5ZSdiullCTHJbm9x+0CAAAAA6TUWnf8h0vZO8miJAel06h4Q6314VLKzCSfrrW+emi9DyV5Y5L1Sf45yRm11rXb8Pwrk/xihwtszj5JHmq6iJ3k4CQ/b7qInWS0X7fR3J4xOTb18+vWz/tmTI69bTWxvdFiPI5N/bxvxuTY3J4xOTaN5dft+bXWYdeU6KmBweaVUpbUWuc3XcfOUEr5da1196br2BlG+3Ubze0Zk2NTn79u/bxvxuQY21YT2xstxuPY1Of7ZkyOwe0Zk2NTP75uvZ5CAgAAALDTaWAAAAAAraeBsXNc1nQBO9HfNV3ATjTar9tobs+YHJv6+XXr530zJsfetprY3mgxHsemft43Y3Jsbs+YHJv67nVzDQwAAACg9RyBAQAAALSeBgYAAADQehoYAAAAQOtpYAAAAACtp4Exwkopny2lPFhK+XHTtfSilPK9UsoJQ/cvKaUsbLqmkdLP+7apfhmPSX+/bv28b5vqlzHZz69ZP+/b5hiT7dfP+7Y5xmT79fO+bapfxmPS369bP+/bpiY0XUAfujzJJ5J8vuE6enVhkotLKTOSvDjJ6xquZyT1875t6vL0x3hM+vt16+d929Tl6Y8x2c+vWT/v2+ZcHmOy7fp53zbn8hiTbdfP+7apy9Mf4zHp79etn/ftOXyN6k5QSpmd5Ju11sObrqUXpZS/T7JHkmNqrY+VUg5NclGSVUkWJ7k5nUB7KMkdtdYPN1Xr9tqGffvfz56vtV7VUKk965fxmBiTMSZbxXjsj/GYGJNjgTE5NhmT/TEm+2U8JsZk+mBMOgKDzSqlHJFk/yQP1VofG1p8cpL/p9Z6Qynl60keTXJtrfVTpZQx05Xdxn37+03mx+R/8H5iTBqTbWI8Go9tY0wak21jTBqTbWNM9seYdA0Mhiml7J/ki0lOSfLrUsqrhh76f5O8qZTy50n2TvLPQ/PfTfK9RordTtuxb5vO0yBj0phsE+PReGwbY9KYbBtj0phsG2Oyj8ZkrdU0wlOS2Ul+3HQdO1j7bkluSnLC0PzLk9y0yTrjk1yT5L8mefnQsquarn0k921L82NxGsvjcXtfN2NybExjeUwaj/03Hof2w5hs4WRMGpNtmwZ1TI7l8bi9r5sx2f7JNTB2gn46T+zZhvbrj5LsnuSv0znE6qJ0zhF7vNb6X5uqrVeb2bcVz56vtd7YXHW96dfxmBiTzVXXm34dk8bj2GVMjj3G5NhkTI5N/ToeE2Oyuep2nAbGCCulfDnJMUn2SfJAkgtrrZ9ptCgGlvFI2xiTtI0xSdsYk7SJ8UjbaGAAAAAArecingAAAEDraWAAAAAAraeBAQAAALSeBgYAAADQehoYAAAAQOtpYAAAAACtp4EBAAAAtJ4GBgAAANB6GhgAAABA62lgAAAAAK2ngQEAAAC0ngYGAAAA0HoaGAAAAEDraWAAAAAArTeh6QJor1LK1CR/n2SXJAcnuSPJmiT/vta6ocnaGEzGJG1jTNI2xiRtYjzSNsbk2FdqrU3XQMuVUo5O8oFa6ylN1wKJMUn7GJO0jTFJmxiPtI0xOXY5hYRtcXiS256ZKaXsXkq5opTyN6WUNzdYF4Nr0zE5p5TymVLKVQ3WxGCTk7SNnKRNZCRtIyPHKA0MtsWhSX78rPn/mOSqWus7k7yumZIYcM8Zk7XWu2qtf9BgPSAnaRs5SZvISNpGRo5RGhhsi5lJfvms+VlJ7hm6//TolwPDxiQ0TU7SNnKSNpGRtI2MHKM0MNgW30nymVLKK4bmV6TziycxhmjGpmMSmiYnaRs5SZvISNpGRo5RLuLJdiul7J7kE+lcsffGWusXGy6JAVdK2TvJf09yQpJP11r/tOGSGHBykraRk7SJjKRtZOTYoYEBAAAAtJ5DtgAAAIDW08AAAAAAWk8DAwAAAGg9DQwAAACg9TQwAAAAgNbTwAAAAABaTwMDAAAAaD0NDAAAAKD1NDAAAACA1tPAAAAAAFpPAwMAAABoPQ0MAAAAoPU0MAAAAIDW08AAAAAAWk8DAwAAAGg9DQwAAACg9TQwYBSUUsaXUv6ylHJbKeXWUsqcpmsCaBM5CdCdnAQNDBgt/y3JXbXWw5IsTPKehusBaBs5CdCdnGTgTWi6AOh3pZTdk/yHWutRQ4t+nuQ1DZYE0CpyEqA7OQkdGhiw8x2f5MBSytKh+b2SXN9cOQCtIycBupOTEKeQwGiYl+SCWuu8Wuu8JP8rydJSyu6llCtKKX9TSnlzoxUCNGteNp+Tc0opnymlXNVodQDNm5fN5+SpQ+8lrymlnNhohTAKNDBg55ue5IkkKaVMSHJikm8k+Y9Jrqq1vjPJ65orD6Bxm83JWutdtdY/aLQygHbYUk5+bei95NuTvLG58mB0aGDAzndHkpcO3X9vkmtrrT9PMivJPUPLn26iMICW2FJOAtCxtZw8P8mlo14VjDINDNj5vpzkN0spP0syN8n/PbR8RTpNjMT/RWCwbSknAejYbE6Wjo8k+Xat9UdNFgijodRam64BBtLQ1aQ/kWRNkhtrrV9suCSAViml7J3kvyc5Icmna61/2nBJAK1SSjk7yduS/DDJ0lrrJxsuCXYqDQwAAACg9Ry2DgAAALSeBgYAAADQehoYAAAAQOtpYAAAAACtp4EBAAAAtJ4GBgAAANB6GhgAAABA62lgAAAAAK33/wNlmeyogN4zIgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAFgCAYAAABNIolGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAySklEQVR4nO3de7hdZX0v+u+bCwmXJIRLkBAwZFc93EIskepuqyAXQauwt9tocXvBosdHKPt42CK7IiBlt9pa3c2RVqkX8HjBFKqo6HZD1BZOqRhsGmSjYDFCACEEiCAkJOQ9f8xFClnJzGWurDHWnJ/P84xnzjHmWHP8Ruab75rzt8YYs9RaAwAAANBm45ouAAAAAGBrNDAAAACA1tPAAAAAAFpPAwMAAABoPQ0MAAAAoPUmNF1AN/vss0+dPXt202XAyFu3rnM7cWKzdUCShx5fmyTZZ49JDVcCQ2QkLSMnaR05SZ+75ZZbHqq17rvp8lY3MGbPnp0lS5Y0XQZAX/ubf7grSfLOl89puBKAdpKTAKOrlPKLzS13CgkAAADQehoY0IR//dfOBMBwMhKgOznJgGr1KSTQt55+uukKANpLRgJ0JycZUBoYAAAA9L1169ZlxYoVWbNmTdOlMGTy5MmZNWtWJm7jBWk1MAAAAOh7K1asyJQpUzJ79uyUUpouZ+DVWrNq1aqsWLEiBx988Db9jGtgAAAA0PfWrFmTvffeW/OiJUop2XvvvbfriBhHYEATpkxpugKA9pKRAN3JyR2medEu2/t6aGBAE/bfv+kKANpLRgJ0JycZUE4hAQAAgFHwwAMP5LTTTsucOXNy1FFH5WUve1m++tWvjmoNy5cvz+GHH/6cZbfeemvmzZuXefPmZa+99srBBx+cefPm5fjjj9/m5/zSl760cf7yyy/PWWedNaJ1JxoY0Iw77+xMAAwnIwG6k5Oj5sFfrcmCT92UBx/r/ZtLaq059dRT8/KXvzx33XVXbrnlllx55ZVZsWLFsHXXr1/f8/a2xxFHHJGlS5dm6dKled3rXpc///M/z9KlS3P99ddvU02bNjB2Fg0MaEKtnQmA4WQkQHejlZPLFiUfPzy5aM/O7bJFO3+bLbNw8Z354fKHs/D63htG3/3ud7PLLrvk3e9+98Zlz3/+8/OHf/iHSTpHLbzhDW/Ia1/72px44ol5+OGHc+qpp2bu3Ll56UtfmmXLliVJLrroonz0ox/d+ByHH354li9fnuXLl+eQQw7JO9/5zhx22GE58cQT8+STTyZJbrnllhx55JF52ctelksvvXSbaz7mmGPyR3/0R3nFK16Rv/zLv8zb3/72XHXVVRsf32OPPZIk5513Xm644YbMmzcvH//4x5Mk9913X0466aS84AUvyLnnnruD/2rPpYEBAADAcy1blHzj7GT1PUlq5/YbZw9ME+NF5387s8+7Nl/4wd2pNfnCD+7O7POuzYvO//YOP+dtt92W3/zN3+y6zk033ZQrrrgi3/3ud3PhhRfmxS9+cZYtW5Y/+ZM/yVvf+tatbuPOO+/MmWeemdtuuy177rlnrr766iTJ6aefnoULF+amm27a7rofffTR/P3f/33OOeecLa7z4Q9/OL/7u7+bpUuX5r3vfW+SZOnSpfnKV76SW2+9NV/5yldyzz33bPe2N6WBAQAAwHMtvjhZ9+Rzl617srN8ANxw7rF53byZmTyx85F58sRxOWXezNzw/mNHbBtnnnlmjjzyyLzkJS/ZuOyEE07IXnvtlSS58cYb85a3vCVJ8spXvjKrVq3K6tWruz7nM9euSJKjjjoqy5cvz+rVq/Poo4/mFa94RZJsfM5t9cY3vnG71n/Gcccdl2nTpmXy5Mk59NBD84tf/GKHnufZNDAAAAB4rtXDr8vQdXmfmTF1cqZMmpC16zdk0oRxWbt+Q6ZMmpAZUybv8HMedthh+dGPfrRx/tJLL83ixYuzcuXKjct23333jffrZk4TKqVkwoQJ2bBhw8Zla9b82/U5Jk2atPH++PHjs379+tRae/r62GfX9Oxt11rz1FNPbfHnNldLrzQwoAnTpnUmAIaTkQDdjUJO3lv33q7l/eihx9fmzb/1/Hz1Pb+dN//W87Py8bU9Pd8rX/nKrFmzJn/913+9cdkTTzyxxfVf/vKX54tf/GKS5Pvf/3722WefTJ06NbNnz97YCPnRj36Un//85123u+eee2batGm58cYbk2Tjc+6I2bNn55ZbbkmSXHPNNVm3bl2SZMqUKXnsscd2+Hm31YSdvgVguP32a7oCgPaSkQDdjUJO7vHqi/PU/3xvdqn/9qH9qTIpe7x6ME4hSZJPvWX+xvuXnHp4lzW3TSklX/va1/Le9743f/Znf5Z99903u+++ez7ykY9sdv2LLroop59+eubOnZvddtstV1xxRZLk9a9/fT7/+c9n3rx5eclLXpIXvvCFW9325z73ubzjHe/Ibrvtlle96lU7vA/vfOc7c8opp+Too4/Occcdt/HojLlz52bChAk58sgj8/a3vz3Tp0/f4W10UzZ3WEpbzJ8/vy5ZsqTpMgD62t/8w11Jkne+fE7DlQC0k5xkUC36zF/k39/9V5mZVbkve+cfD3pPFvzBli/k2Ha33357DjnkkKbLYBObe11KKbfUWudvuq4jMKAJd9zRud2GbinAwJGRAN2NUk4u3uUVWfbiV+W0ow/Kl26+OysfW5MFO3WL0J0GBgAAAMOM9CkU0CsX8QQAAABaTwMDAAAAaD0NDAAAAKD1XAMDmrCTvlYIoC/ISIDu5OTo+dxrOrenX9tsHSRxBAY0Y999OxMAw8lIgO7k5Jg1fvz4zJs3L4cddliOPPLIfOxjH8uGDRsaqWXJkiU5++yzu64ze/bsHHHEETniiCNy6KGH5vzzz8/atWuTJMuXL08pJR/84Ac3rv/QQw9l4sSJOeuss5IkF110UT760Y+OWM0aGNCEDRs6EwDDyUiA7uTk6Fi2KFnxw+QXNyYfP7wz36Ndd901S5cuzW233Zbrrrsu3/rWt/KhD31oBIrdfvPnz8/ChQu3ut73vve93Hrrrbn55ptz11135V3vetfGx+bMmZNvfvObG+f/9m//NocddthOqTcZoQZGKeWkUspPSyk/K6Wc12W9l5RSni6l/KeR2C6MWT/7WWcCYDgZCdCdnNz5li1KvnF28nTnaIOsvqczPwJNjGfMmDEjl112WT7xiU+k1prf/d3fzdKlSzc+/tu//dtZtmxZLrroorzjHe/IMccckzlz5jyn6XDqqafmqKOOymGHHZbLLrts4/I99tgj73//+3PUUUfl+OOPz80337zx57/+9a8nSb7//e/n937v95Ikjz/+eE4//fQcccQRmTt3bq6++uph9e6xxx755Cc/ma997Wt5+OGHk3QaMoccckiWLFmSJPnKV76SBQsWjNi/0aZ6bmCUUsYnuTTJyUkOTfL7pZRDt7DeR5J8p9dtAgAAwE6z+OJk3ZPPXbbuyc7yETRnzpxs2LAhDz74YM4444xcfvnlSZI77rgja9euzdy5c5MkP/nJT/Kd73wnN998cz70oQ9l3bp1SZLPfvazueWWW7JkyZIsXLgwq1atSpL8+te/zjHHHJNbbrklU6ZMyfnnn5/rrrsuX/3qV3PBBRcMq+OP//iPM23atNx6661ZtmxZXvnKV2623qlTp+bggw/OnXfeuXHZm970plx55ZVZsWJFxo8fn5kzZ47kP9FzjMQRGEcn+Vmt9a5a61NJrkxyymbW+8MkVyd5cAS2CQAAADvH6hXbt7wHtdYkyRve8IZ885vfzLp16/LZz342b3/72zeu85rXvCaTJk3KPvvskxkzZuSBBx5IkixcuDBHHnlkXvrSl+aee+7Z2FjYZZddctJJJyVJjjjiiLziFa/IxIkTc8QRR2T58uXDarj++utz5plnbpyf3uVCsc/U+4yTTjop1113Xb785S/njW984w79G2yrkWhgHJDknmfNrxhatlEp5YAk/yHJJ0dgewAAALDzTJu1fct30F133ZXx48dnxowZ2W233XLCCSfkmmuuyaJFi3LaaadtXG/SpEkb748fPz7r16/P97///Vx//fW56aab8i//8i958YtfnDVr1iRJJk6cmFJKkmTcuHEbf37cuHFZv379sDpqrRvX7+axxx7L8uXL88IXvnDjsl122SVHHXVU/uIv/iKvf/3rd+wfYhuNRANjc3tZN5n/H0neX2t9eqtPVsq7SilLSilLVq5cOQLlAQAAwHY47oJk4q7PXTZx187yEbJy5cq8+93vzllnnbWxeXDGGWfk7LPPzkte8pLstddeXX9+9erVmT59enbbbbf85Cc/yT/90z/tcC0nnnhiPvGJT2ycf+SRR4at8/jjj+c973lPTj311GFHaJxzzjn5yEc+kr333nuHa9gWI9HAWJHkwGfNz0py3ybrzE9yZSlleZL/lOSvSimnbu7Jaq2X1Vrn11rn7+urgehXe+/dmQAYTkYCdCcnd765C5LXLkzGDx35MO3Azvzc3i5Q+eSTT278GtXjjz8+J554Yi688MKNjx911FGZOnVqTj/99K0+10knnZT169dn7ty5+eAHP5iXvvSlO1zX+eefn0ceeSSHH354jjzyyHzve9/b+Nixxx6bww8/PEcffXQOOuigfOpTnxr284cddlje9ra3bfa5L7nkksyaNWvj1Iuy6fkr2/0EpUxIckeS45Lcm+SHSU6rtd62hfUvT/LNWutVW3vu+fPn12euZgrAzvE3/3BXkuSdL5/TcCUA7SQnoT/cfvvtOeSQQ7bvhz73ms7t6deOfEGbcd999+WYY47JT37yk4wbNyJfGtp6m3tdSim31Frnb7ruhF43VmtdX0o5K51vFxmf5LO11ttKKe8eetx1L2BTz5x3NqHn/4IA/UdGAnQnJ0fPKDUukuTzn/98PvCBD+RjH/vYwDQvtteIjPha67eSfGuTZZttXNRa3z4S24Qx7a7OX3LyrIvfADBERgJ0Jyf70lvf+ta89a1vbbqMVtPWAQAAYCD0egkFRtb2vh4aGAAAAPS9yZMnZ9WqVZoYLVFrzapVqzJ58uRt/hknTQEAAND3Zs2alRUrVmTlypVNl8KQyZMnb9c3k2hgAAAA0PcmTpyYgw8+uOky6IEGBjRh332brgCgvWQkQHdykgGlgQFNmD696QoA2ktGAnQnJxlQLuIJTXjqqc4EwHAyEqA7OcmA0sCAJixf3pkAGE5GAnQnJxlQGhgAAABA62lgAAAAAK2ngQEAAAC0ngYGAAAA0Hq+RhWasN9+TVcA0F4yEqA7OcmA0sCAJkyb1nQFAO0lIwG6k5MMKKeQQBPWrOlMAAwnIwG6k5MMKA0MaMLdd3cmAIaTkQDdyUkGlAYGAAAA0HoaGAAAAEDraWAAAAAAraeBAQAAALSer1GFJjzveU1XANBeMhKgOznJgNLAgCZMndp0BQDtJSMBupOTDCinkEATnniiMwEwnIwE6E5OMqA0MKAJK1Z0JgCGk5EA3clJBpQGBgAAANB6GhgAAABA62lgAAAAAK2ngQEAAAC0nq9RhSbMnNl0BQDtJSMBupOTDCgNDGjCHns0XQFAe8lIgO7kJAPKKSTQhMcf70wADCcjAbqTkwyoEWlglFJOKqX8tJTys1LKeZt5/M2llGVD0z+WUo4cie3CmHXffZ0JgOFkJEB3cpIB1XMDo5QyPsmlSU5OcmiS3y+lHLrJaj9P8opa69wkf5zksl63CwAAAAyOkTgC4+gkP6u13lVrfSrJlUlOefYKtdZ/rLU+MjT7T0lmjcB2AQAAgAExEg2MA5Lc86z5FUPLtuQPknx7Sw+WUt5VSllSSlmycuXKESgPAAAAGOtGooFRNrOsbnbFUo5Np4Hx/i09Wa31slrr/Frr/H333XcEygMAAADGupH4GtUVSQ581vysJMOuKFNKmZvk00lOrrWuGoHtwtg1y1lUAFskIwG6k5MMqJE4AuOHSV5QSjm4lLJLkjcl+fqzVyilHJTk75K8pdZ6xwhsE8a23XbrTAAMJyMBupOTI+LBX63Jgk/dlAcfW9N0KSOuX/et5wZGrXV9krOSfCfJ7UkW1VpvK6W8u5Ty7qHVLkiyd5K/KqUsLaUs6XW7MKb96ledCYDhZCRAd3JyRCxcfGd+uPzhLLz+zqZLGXH9um8jcQpJaq3fSvKtTZZ98ln3z0hyxkhsC/rCL3/ZuZ06tdk6ANpIRgJ0Jyd78qLzv51XbfiHnDthUS7e5aHc98/75OwfLsh3xr08P73k5KbL68mLzv921q7fsHH+Cz+4O1/4wd2ZNGHcmN+3ZIQaGAAAADAW3Pzah7Pr//xMdqlrkySzykP56KTP5I9PPrzhynp3w7nH5ttfXpjj7/tk9s+q3J99snjm/5mTTju76dJGxEhcAwMAAADGhGn/+KcbmxfP2KWuzbT/708bqmjkzFj+9fz+Lz+aA8qqjCvJAeWhvOmXH82Mn3996z88BmhgAAAAMDhWr9i+5WPJ4os325zJ4osbKmhkaWAAAAAwOKZt4Wtot7R8LOnn5kw0MKAZBx3UmQAYTkYCdCcne3PcBcnEXZ+7bOKuneVjXT83Z6KBAc2YPLkzATCcjAToTk72Zu6C5LULk/GTOvPTDuzMz13QbF0joZ+bM/EtJNCM1as7t9OmNVsHQBvJSIDu5GTv5i7oj4bFpp7Zp8UXd04bmTar07zok33VwIAmPPBA59YvHYDhZCRAd3KSbvq1OROnkAAAAABjgAYGAAAA0HoaGAAAAEDraWAAAAAArecintCE2bObrgCgvWQkQHdykgGlgQFJ8rnXdG5Pv3Z0trfLLqOzHYCxaLQzcrR/BwD0yntJBpRTSNh2n3vNv73JozePPNKZ6I0xCf1JRgJ0JycZUI7AGGn+isO2WLmyczt9erN1ALSRjAToTk4yoByBAQAAALSeBgZAGzk9BgAAnkMDAwBGisYTAMBOo4EBAAAAtJ6LeEIT5sxpugKA9pKRAN3JSQaUBgY0YYL/egBbJCMBupOTDCinkEATVq3qTAAMJyPZGtebYdDJSQaUBgY0wS8dgC0bzYxctihZ8cPkFzcmHz+8Mw/Qdt5LMqA0MACArevHv3gvW5R84+zk6bWd+dX3dOb7pYnRj68ZAANNAwMAGEyLL07WPfncZeue7CwHAFpHA2MkOQyVNvIXOIDNW71i+5YDAI3SwBgp/X4Yaj/TeBqbvG5Ar6bN2r7lAECjNDBGisNQx6amGk+/8RudiR2jYQj9bbQy8rgLkom7PnfZxF07ywHazHtJBpQGxkjp98NQ+/Wv3U01nsaN60zsGA1D6G+jlZFzFySvXZinx0/OhiRPT5mVvHZhZzlAm3kvyYAakVFfSjmplPLTUsrPSinnbebxUkpZOPT4slLKb47Edlulnw9D7ee/djfVeFq5sjOxY/q9YQiDbjQzcu6CXDjhvfl3a76YC+dc2VfNiwfX75YFd5+SBx9b03QpI66f9w22ifeSDKieGxillPFJLk1ycpJDk/x+KeXQTVY7OckLhqZ3JfnrXrfbOv18GGo//7W7qcbTI490JnZMPzcMh3hzPgb165FqTRiljHzR+d/O7POuzRdWH5Gaki/84O7MPu/avOj8b+/0bY+GhQ8dlR8+OTMLr7+z6VJGXD/vG2wT7yUZUCNxBMbRSX5Wa72r1vpUkiuTnLLJOqck+Xzt+Kcke5ZS9h+BbbfGixZNydm/Pj0rNuyTDbVkxYZ9cvavT8+LFk1purSebXh083/V3tLyseSch0/JE3WX5yx7ou6Scx7edAjTKv3cMEySZYsy8d5/ypUb3peJC+f6IDwW9PORan3shnOPzevmzczksi5JMnniuJwyb2ZueP+xDVfWm35uzPTzvgGwdSPRwDggyT3Pml8xtGx71xnTbjj32GTughy/7i8yZ+0Xc3z9RMrcBWP+TVCS1Kmbf6m2tHwsef/7Ppi/nfm+3Fv3zoZacm/dJ1fNfF/ef+4Hmy5txPTjX/L7uWF4zgc/kCeuPjPT86uMK8n0dQ/kiavPzDkf/EDTpdFNPx+p1sdmTJ2cKZMmZG2dkEllfdau35ApkyZkxpTJTZfWk35tzCT9vW8AbN1INDDKZpbVHVins2Ip7yqlLCmlLFk5hs7r6tc3QUky/oQL81SZ9JxlT5VJGX/ChQ1VNHJmTJ2cO2acnN9ZuzCHPHVFfuephbljxsl98bo9ox8Ps+3nhuGf7fm17Faees6y3cpT+bM9v9ZMQWwb12UZsx56fG3ePO3H+epBV+fNv/X8rHx8bdMl9ayf35P0874BsHUTRuA5ViQ58Fnzs5LctwPrJElqrZcluSxJ5s+fv9kmR1s98ybotD3/d760/7lZ2S9/8Z67IJ+/8a68/sFLs2d+lUcn7perp78jZ/TJhc769XV70fnfztr1G5IckST5wg/uzhd+cHcmTRiXn15ycrPF9Wj4G9gJffMGdvxj927Xclpi2qzOaSObW06rfeot85PPdRryl5x6eMPVjJx+/d2W9Pe+AdDdSDQwfpjkBaWUg5Pcm+RNSU7bZJ2vJzmrlHJlkt9KsrrWev8IbLtV+vVNUJKc8Z7zks/dkCSZfvq1OaPhekZSI6/bC1+40zdxw7nH5pJv3Z7/9S+/yJo6MZMnjsurDntePvCaQ3b6tkdD376B9UF4bDrugs41L559Gkk/XZdltI1CRva7fn5P8qkj70qWfyx5YG0uWfOjof9n85suC0aXnGRA9dzAqLWuL6WcleQ7ScYn+Wyt9bZSyruHHv9kkm8leXWSnyV5IsnpvW4X6G7G1Mn5nV9/N+dO/KvMLA/lvuyTf/z1ezJjyoubLm1E9O2bcx+Ex6Znjki75qzOhTynHdh5zfrkSLWN37Dy9NrON6z00771q359zbZ0wdykP/YPgK5G4giM1Fq/lU6T4tnLPvms+zXJmSOxLegLDzzQud1vv523jWWLcsqKj2TSuM6bvFl5KKes+Eiy7EBv8tqs3z8I97O5C/LgD/42Z913Qj5xxlv74pSmJM18YByNjOxn/fwhv9sFc8f6vsH2kJMMqJG4iCewvVav7kw70+KLM6k+92J0k+pa34owFsxdkMx6SfL830ne+2NvyseQfrxobiPfsDIaGflsp1/bmfpFP38rjgvmQsdo5yS0xIgcgQG0kDd5MGr6+aK5Gx5dkXGb+S6xDY+u8FeQturn/HedIICB5r0H9KstvZnzJo+mfe41namP3HDusXndvJmZXNYlSSZPHJdT5s3si6/2rVMP2K7ltEA/5/9xF3SuC/RsrhMEMDA0MKBfeZMHo2b4V/tu6J+v9j3hwjxVJj1n2VNlUsafcGFDFbFV/Zz/cxckr12YjB8ak9MO7Mw71Q5gIDiFZKT10zm07DxlM8djjzQXg4RR1bdf7Tt3QT5/4115/YOXZs/8Ko9O3C9XT39HztiZWTIaGdnP+j3/5y5Ibrmic9/7LgaVnGRAaWBAE17wgtHZjjd5MGr69qt9k5zxnvOSz92QJJl++rU5Y2dvcLQysp/Jf+hvcpIB5RQSAAAAoPUcgQFNuP/+zu3++zdbx1jnr4rQn2QkQHdykgGlgQHJ6H8Qfuyxzq1fOgDDyUiA7uQkA8opJAAAAEDrOQKDbedwfQAAABqigQEAI0WjFwBgp3EKCTRh/PjOBINm2aI8vWJJNvzixjz9F4clyxY1XRFtJCMBupOTDChHYEAT/t2/a7oCGH3LFiXfODvjn17TmX9sRfKNszv35y5ori7aR0YCdCcnGVCOwABoo9Ov7bvTEe69+r8l65587sJ1T3aWAwDAVjgCA5pw772d2wMO2Pnb6rMPwYxdM8uq7VrOABvNjAQYi+QkA0oDA5rw6183XQGMujJtVrL6ns0vh2eTkWyN5jyDTk4yoDQwABgdx12QtV89K5Pq2o2L1pZJmXTcBQ0WxTbzgXHs8ZoB0GdcAwOA0TF3QSb9h08k4yd15qcd2Jl3AU8AALaBIzAAGD1zFyS3XNG576/DAABsBw0MaMLEiU1XANBeMhKgOznJgNLAgCYcfHDTFQC0l4wE6E5OMqBcAwMAAABoPQ0MaMI993QmAIaTkQDdyUkGlFNIoAlPPtl0BQDtJSMBupOTDChHYAAAAACtp4EBAAAAtJ4GBgAAANB6roEBTZg0qekKANpLRgJ0JycZUBoY0ITnP7/pCqA5p1/bdAW0nYwE6E5OMqCcQgIAAAC0Xk8NjFLKXqWU60opdw7dTt/MOgeWUr5XSrm9lHJbKeW/9LJN6Au/+EVnAmA4GQnQnZxkQPV6BMZ5SRbXWl+QZPHQ/KbWJzmn1npIkpcmObOUcmiP24Wxbe3azgTAcDISoDs5yYDqtYFxSpIrhu5fkeTUTVeotd5fa/3R0P3Hktye5IAetwsAAAAMkF4bGPvVWu9POo2KJDO6rVxKmZ3kxUl+0GWdd5VSlpRSlqxcubLH8gAAAIB+sNVvISmlXJ/keZt56APbs6FSyh5Jrk7yf9Vaf7Wl9WqtlyW5LEnmz59ft2cbAAAAQH/aagOj1nr8lh4rpTxQStm/1np/KWX/JA9uYb2J6TQvvlhr/bsdrhb6xa67Nl0BQHvJSIDu5CQDaqsNjK34epK3Jfnw0O01m65QSilJPpPk9lrrx3rcHvSHAw9sugKA9pKRAN3JSQZUr9fA+HCSE0opdyY5YWg+pZSZpZRvDa3z20nekuSVpZSlQ9Ore9wuAAAAMEB6OgKj1roqyXGbWX5fklcP3b8xSellO9B3fv7zzu3BBzdbB0AbyUiA7uQkA6rXU0iAHbFuXdMVALSXjAToTk4yoHo9hQQAAABgp9PAAAAAAFpPAwMAAABoPdfAgCbsvnvTFQC0l4wE6E5OMqA0MKAJBxzQdAUA7SUjAbqTkwwop5AAAAA73YO/WpMFn7opDz62pulSRlw/7xu0iQYGNOFf/7UzATCcjIS+tHDxnfnh8oez8Po7my5lxI36vslJBpRTSKAJTz/ddAUA7SUjoa+86PxvZ+36DRvnv/CDu/OFH9ydSRPG5aeXnNxgZb1rbN/kJAPKERgAAMBOc8O5x+Z182Zm8sTOR4/JE8fllHkzc8P7j224st71875BG2lgAAAAO82MqZMzZdKErF2/IZMmjMva9RsyZdKEzJgyuenSetbP+wZt5BQSAABgp3ro8bV58289P6cdfVC+dPPdWdlHF7s8+P5r86NJl2bP/CqP7rpfrr7/HUmOaLos6EsaGNCEKVOargCgvWQk9J1PHXlXcs1ZydK1uWTagclxFySZ33RZvVu2KGc88j+SPJkkmb7ugc78sjnJ3AU7b7tykgGlgQFN2H//pisAaC8ZCf1l2aLkG2cnT6/tzK++pzOf7NwP+aNh8cXJuiefu2zdk53lO3Pf5CQDyjUwAACAnafbh/yxbvWK7VsO9EQDA5pw552dCYDhZCT0l37+kD9t1vYtHylykgGlgQFNqLUzATCcjIT+0tSH/NFw3AXJxF2fu2zirkPX+NiJ5CQDSgMDAADYeZr6kD8a5i5IXrswmXZgktK5fe3CsX9tD2gpF/EEAAB2nmc+zC++uHPayLRZneZFv3zIn7ugf/YFWk4DAwAA2Ll8yAdGgAYGNGHatKYrAGgvGQnQnZxkQGlgQBP226/pCgDaS0YCdCcnGVAu4gkAAAC0ngYGNOGOOzoTAMPJSIDu5CQDSgMDAAAAaD0NDAAAAKD1NDAAAACA1tPAAAAAAFrP16hCE6ZPb7oCgPaSkQDdyUkGlAYGNGHffZuuAKC9ZCRAd3KSAdXTKSSllL1KKdeVUu4cut1iK7CUMr6U8s+llG/2sk3oCxs2dCYAhpORAN3JSQZUr9fAOC/J4lrrC5IsHprfkv+S5PYetwf94Wc/60wADCcjAbqTkwyoXhsYpyS5Yuj+FUlO3dxKpZRZSV6T5NM9bg8AAAAYQL02MPartd6fJEO3M7aw3v9Icm6SrR7nVEp5VyllSSllycqVK3ssDwAAAOgHW72IZynl+iTP28xDH9iWDZRSfi/Jg7XWW0opx2xt/VrrZUkuS5L58+fXbdkGAAAA0N+22sCotR6/pcdKKQ+UUvavtd5fStk/yYObWe23k7yulPLqJJOTTC2lfKHW+p93uGoAAABgoPR6CsnXk7xt6P7bklyz6Qq11v9Wa51Va52d5E1Jvqt5wcDbe+/OBMBwMhKgOznJgNrqERhb8eEki0opf5Dk7iRvSJJSyswkn661vrrH54f+5BcOwJbJSIDu5CQDqqcGRq11VZLjNrP8viTDmhe11u8n+X4v24S+sH5953ZCrz1EgD4kIwG6k5MMqF5PIQF2xF13dSYAhpORAN3JSQaUBgYAAADQehoYAAAAQOtpYAAAAACtp4EBAAAAtJ7L1kIT9t236QoA2ktGAnQnJxlQGhjQhOnTm64AoL1kJEB3cpIB5RQSaMJTT3UmAIaTkQDdyUkGlAYGNGH58s4EwHAyEqA7OcmA0sAAAAAAWk8DAwAAAGg9DQwAAACg9TQwAAAAgNbzNarQhP32a7oCgPaSkQDdyUkGlAYGNGHatKYrAGgvGQnQnZxkQDmFBJqwZk1nAmA4GQnQnZxkQGlgQBPuvrszATCcjAToTk4yoDQwAAAAgNbTwAAAAABaTwMDAAAAaD0NDAAAAKD1fI0qNOF5z2u6AoD2kpEA3clJBpQGBjRh6tSmKwBoLxkJ0J2cZEA5hQSa8MQTnQmA4WQkQHdykgGlgQFNWLGiMwEwnIwE6E5OMqA0MAAAAIDW08AAAAAAWk8DAwAAAGg9DQwAAACg9XyNKjRh5symKwBoLxkJ0J2cZEBpYEAT9tij6QoA2ktGAnQnJxlQPZ1CUkrZq5RyXSnlzqHb6VtYb89SylWllJ+UUm4vpbysl+3CmPf4450JgOFkJEB3cpIB1es1MM5LsrjW+oIki4fmN+cvk/zPWuv/keTIJLf3uF0Y2+67rzMBMJyMBOhOTjKgem1gnJLkiqH7VyQ5ddMVSilTk7w8yWeSpNb6VK310R63CwAAAAyQXhsY+9Va70+SodsZm1lnTpKVST5XSvnnUsqnSym7b+kJSynvKqUsKaUsWblyZY/lAQAAAP1gqw2MUsr1pZQfb2Y6ZRu3MSHJbyb561rri5P8Ols+1SS11stqrfNrrfP33XffbdwEAAAA0M+2+i0ktdbjt/RYKeWBUsr+tdb7Syn7J3lwM6utSLKi1vqDofmr0qWBAQAAALCpXr9G9etJ3pbkw0O312y6Qq31l6WUe0opL6q1/jTJcUn+d4/bhbFt1qymKwBoLxkJ0J2cZED12sD4cJJFpZQ/SHJ3kjckSSllZpJP11pfPbTeHyb5YilllyR3JTm9x+3C2Lbbbk1XANBeMhKgOznJgOqpgVFrXZXOERWbLr8vyaufNb80yfxetgV95Ve/6txOndpsHQBtJCMBupOTDKhej8AAdsQvf9m59UsHYDgZCdCdnGRA9fo1qgAAAAA7nQYGAAAA0HoaGAAAAEDraWAAAAAArecintCEgw5qugKA9pKRAN3JSQaUBgY0YfLkpisAaC8ZCdCdnGRAOYUEmrB6dWcCYDgZCdCdnGRAOQIDmvDAA53badOarQOgjWQkQHdykgHlCAwAAACg9TQwAAAAgNbTwAAAAABaTwMDAAAAaD0X8YQmzJ7ddAUA7SUjAbqTkwwoDQxowi67NF0BQHvJSIDu5CQDyikk0IRHHulMAAwnIwG6k5MMKEdgQBNWruzcTp/ebB0AbSQjAbqTkwwoR2AAAAAAraeBAQAAALSeBgYAALTBskXJxw9PLtqzc7tsUdMVAbSKa2AAAEDTli1KvnF2su7JzvzqezrzSTJ3QXN1AbSIBgY0Yc6cpisAaC8ZySBafPG/NS+ese7JznINDDYlJxlQGhjQhAn+6wFskYxkEK1esX3LGWxykgHlGhjQhFWrOhMAw8lIBtG0Wdu3nMEmJxlQGhjQBL90ALZMRjKAznn4lDxRd3nOsifqLjnn4VMaqohWk5MMKA0MAABo2Pvf98H87cz35d66TzbUknvrPrlq5vvy/nM/2HRpAK3h5CkAAGjYjKmTc8eMk3PR8sOyy/hxeerpDXnzjIPy1imTmy4NoDU0MAAAoAUeenxt3vxbz89pRx+UL918d1Y+tqbpkgBaRQMDAABa4FNvmb/x/iWnHt5gJQDtpIEBTfiN32i6AoD2kpEA3clJBlRPF/EspexVSrmulHLn0O30Laz33lLKbaWUH5dSvlxKcTIfg23cuM4EwHAyEqA7OcmA6nXUn5dkca31BUkWD80/RynlgCRnJ5lfaz08yfgkb+pxuzC2rVzZmQAYTkYCdCcnGVC9NjBOSXLF0P0rkpy6hfUmJNm1lDIhyW5J7utxuzC2PfJIZwJgOBkJ0J2cZED12sDYr9Z6f5IM3c7YdIVa671JPprk7iT3J1lda/1fW3rCUsq7SilLSilLVuoqAgAAANmGBkYp5fqha1dsOp2yLRsYui7GKUkOTjIzye6llP+8pfVrrZfVWufXWufvu+++27ofAAAAQB/b6reQ1FqP39JjpZQHSin711rvL6Xsn+TBzax2fJKf11pXDv3M3yX590m+sIM1AwAAAAOm11NIvp7kbUP335bkms2sc3eSl5ZSdiullCTHJbm9x+0CAAAAA6TUWnf8h0vZO8miJAel06h4Q6314VLKzCSfrrW+emi9DyV5Y5L1Sf45yRm11rXb8Pwrk/xihwtszj5JHmq6iJ3k4CQ/b7qInWS0X7fR3J4xOTb18+vWz/tmTI69bTWxvdFiPI5N/bxvxuTY3J4xOTaN5dft+bXWYdeU6KmBweaVUpbUWuc3XcfOUEr5da1196br2BlG+3Ubze0Zk2NTn79u/bxvxuQY21YT2xstxuPY1Of7ZkyOwe0Zk2NTP75uvZ5CAgAAALDTaWAAAAAAraeBsXNc1nQBO9HfNV3ATjTar9tobs+YHJv6+XXr530zJsfetprY3mgxHsemft43Y3Jsbs+YHJv67nVzDQwAAACg9RyBAQAAALSeBgYAAADQehoYAAAAQOtpYAAAAACtp4Exwkopny2lPFhK+XHTtfSilPK9UsoJQ/cvKaUsbLqmkdLP+7apfhmPSX+/bv28b5vqlzHZz69ZP+/b5hiT7dfP+7Y5xmT79fO+bapfxmPS369bP+/bpiY0XUAfujzJJ5J8vuE6enVhkotLKTOSvDjJ6xquZyT1875t6vL0x3hM+vt16+d929Tl6Y8x2c+vWT/v2+ZcHmOy7fp53zbn8hiTbdfP+7apy9Mf4zHp79etn/ftOXyN6k5QSpmd5Ju11sObrqUXpZS/T7JHkmNqrY+VUg5NclGSVUkWJ7k5nUB7KMkdtdYPN1Xr9tqGffvfz56vtV7VUKk965fxmBiTMSZbxXjsj/GYGJNjgTE5NhmT/TEm+2U8JsZk+mBMOgKDzSqlHJFk/yQP1VofG1p8cpL/p9Z6Qynl60keTXJtrfVTpZQx05Xdxn37+03mx+R/8H5iTBqTbWI8Go9tY0wak21jTBqTbWNM9seYdA0Mhiml7J/ki0lOSfLrUsqrhh76f5O8qZTy50n2TvLPQ/PfTfK9RordTtuxb5vO0yBj0phsE+PReGwbY9KYbBtj0phsG2Oyj8ZkrdU0wlOS2Ul+3HQdO1j7bkluSnLC0PzLk9y0yTrjk1yT5L8mefnQsquarn0k921L82NxGsvjcXtfN2NybExjeUwaj/03Hof2w5hs4WRMGpNtmwZ1TI7l8bi9r5sx2f7JNTB2gn46T+zZhvbrj5LsnuSv0znE6qJ0zhF7vNb6X5uqrVeb2bcVz56vtd7YXHW96dfxmBiTzVXXm34dk8bj2GVMjj3G5NhkTI5N/ToeE2Oyuep2nAbGCCulfDnJMUn2SfJAkgtrrZ9ptCgGlvFI2xiTtI0xSdsYk7SJ8UjbaGAAAAAArecingAAAEDraWAAAAAAraeBAQAAALSeBgYAAADQehoYAAAAQOtpYAAAAACtp4EBAAAAtJ4GBgAAANB6GhgAAABA62lgAAAAAK2ngQEAAAC0ngYGAAAA0HoaGAAAAEDraWAAAAAArTeh6QJor1LK1CR/n2SXJAcnuSPJmiT/vta6ocnaGEzGJG1jTNI2xiRtYjzSNsbk2FdqrU3XQMuVUo5O8oFa6ylN1wKJMUn7GJO0jTFJmxiPtI0xOXY5hYRtcXiS256ZKaXsXkq5opTyN6WUNzdYF4Nr0zE5p5TymVLKVQ3WxGCTk7SNnKRNZCRtIyPHKA0MtsWhSX78rPn/mOSqWus7k7yumZIYcM8Zk7XWu2qtf9BgPSAnaRs5SZvISNpGRo5RGhhsi5lJfvms+VlJ7hm6//TolwPDxiQ0TU7SNnKSNpGRtI2MHKM0MNgW30nymVLKK4bmV6TziycxhmjGpmMSmiYnaRs5SZvISNpGRo5RLuLJdiul7J7kE+lcsffGWusXGy6JAVdK2TvJf09yQpJP11r/tOGSGHBykraRk7SJjKRtZOTYoYEBAAAAtJ5DtgAAAIDW08AAAAAAWk8DAwAAAGg9DQwAAACg9TQwAAAAgNbTwAAAAABaTwMDAAAAaD0NDAAAAKD1NDAAAACA1tPAAAAAAFpPAwMAAABoPQ0MAAAAoPU0MAAAAIDW08AAAAAAWk8DAwAAAGg9DQwAAACg9TQwYBSUUsaXUv6ylHJbKeXWUsqcpmsCaBM5CdCdnAQNDBgt/y3JXbXWw5IsTPKehusBaBs5CdCdnGTgTWi6AOh3pZTdk/yHWutRQ4t+nuQ1DZYE0CpyEqA7OQkdGhiw8x2f5MBSytKh+b2SXN9cOQCtIycBupOTEKeQwGiYl+SCWuu8Wuu8JP8rydJSyu6llCtKKX9TSnlzoxUCNGteNp+Tc0opnymlXNVodQDNm5fN5+SpQ+8lrymlnNhohTAKNDBg55ue5IkkKaVMSHJikm8k+Y9Jrqq1vjPJ65orD6Bxm83JWutdtdY/aLQygHbYUk5+bei95NuTvLG58mB0aGDAzndHkpcO3X9vkmtrrT9PMivJPUPLn26iMICW2FJOAtCxtZw8P8mlo14VjDINDNj5vpzkN0spP0syN8n/PbR8RTpNjMT/RWCwbSknAejYbE6Wjo8k+Xat9UdNFgijodRam64BBtLQ1aQ/kWRNkhtrrV9suCSAViml7J3kvyc5Icmna61/2nBJAK1SSjk7yduS/DDJ0lrrJxsuCXYqDQwAAACg9Ry2DgAAALSeBgYAAADQehoYAAAAQOtpYAAAAACtp4EBAAAAtJ4GBgAAANB6GhgAAABA62lgAAAAAK33/wNlmeyogN4zIgAAAABJRU5ErkJggg==", "text/plain": [ "
" ]