-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathyolov5_dt.py
27 lines (25 loc) · 1.14 KB
/
yolov5_dt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from detection_helpers import *
from models.experimental import attempt_load
class Yolov5Detector:
def __init__(self, weights, img_size=(640, 640), conf_thresh=0.4, iou_thresh=0.5, device='cpu', agnostic_nms=False):
self.img_size = img_size
self.conf_thresh = conf_thresh
self.iou_thresh = iou_thresh
self.device = torch.device(device)
self.agnostic_nms = agnostic_nms
self.model = attempt_load(weights, map_location=self.device)
@torch.no_grad()
def detect(self, im):
img, __, __ = letterbox(im, new_shape=self.img_size)
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(np.expand_dims(img, 0))
img = torch.from_numpy(img).float().to(self.device).div(255)
dets = self.model(img)[0].cpu()
dets = non_max_suppression(dets, self.conf_thresh, self.iou_thresh, self.agnostic_nms)
det=dets[0]
if det is not None and len(det):
det = det[det[:, 0].argsort()]
det[:,:4] = scale_coords(det[:, :4], img.shape[2:], im.shape).round()
else:
det = []
return det