-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdt2ds.py
214 lines (200 loc) · 7.32 KB
/
dt2ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import os
import time
from distutils.util import strtobool
import cv2
import numpy as np
from tqdm import tqdm
#from detectron2_dt import detectron2
from sort import Sort
from deep_sort import DeepSort
from util import draw_bboxes, draw_detections
from detectron2.utils.logger import setup_logger
import numpy as np
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
def detectron2(im, args, predictor):
#predictor = DefaultPredictor(setup_cfg(args))
predictions = predictor(im)
boxes = predictions["instances"].pred_boxes.tensor.cpu().numpy()
scores = predictions["instances"].scores.cpu().numpy()
dets = []
for (box, score) in zip(boxes, scores):
t, l, b, r = box
dets.append([t, l, b, r, score])
if os.path.basename(args.config_file).split('_')[0] == 'mask':
predict_masks = predictions["instances"].pred_masks
masks = predict_masks.cpu().numpy()
temp = np.zeros_like(im[:, :, 0])
for i in range(len(predict_masks)):
predict_mask_i = predict_masks[i]
temp += np.array(predict_mask_i.to("cpu").numpy()).astype(np.uint8)
region = im.copy()
region[temp == 0] = 0
region[temp!= 0] = im[temp != 0]
return dets, np.array(masks), region
return dets, [], []
def setup_cfg(args):
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
cfg.merge_from_list(args.opts)
return cfg
def main():
args = get_parser().parse_args()
if args.display:
cv2.namedWindow("out_vid", cv2.WINDOW_NORMAL)
cv2.resizeWindow("out_vid", 960, 720)
sort = Sort()
deepsort = DeepSort(args.deepsort_checkpoint, nms_max_overlap=args.nms_max_overlap, use_cuda=bool(strtobool(args.use_cuda)))
assert os.path.isfile(args.input), "Error: path error, input file not found"
if args.out_vid:
out_vid = cv2.VideoWriter(
filename=args.out_vid,
fourcc=cv2.VideoWriter_fourcc(*'MJPG'),
fps=args.fps,
frameSize=(1920, 1440),
)
if args.out_txt:
out_txt = open(args.out_txt, "w+")
total_counter = [0]*1000
inp_vid = cv2.VideoCapture(args.input)
num_frames = int(inp_vid.get(cv2.CAP_PROP_FRAME_COUNT))
predictor = DefaultPredictor(setup_cfg(args))
for frameID in tqdm(range(num_frames)):
ret, im = inp_vid.read()
start = time.time()
dets, masks, region = detectron2(im, args, predictor)
if args.region_based:
im = region
if args.tracker == 'sort':
if len(dets):
dets = np.array(dets)
else:
dets = np.empty((0,5))
outputs = sort.update(dets)
outputs = np.array([element.clip(min=0) for element in outputs]).astype(int)
else:
if len(dets):
ccwh_boxes = []
for det in dets:
ccwh_boxes.append([(det[0]+det[2])/2, (det[1]+det[3])/2, det[2]-det[0], det[3]-det[1]])
ccwh_boxes = np.array(ccwh_boxes)
confidences = np.ones(len(dets))
outputs, __ = deepsort.update(ccwh_boxes, confidences, im)
else:
outputs = []
current_counter = []
if len(outputs):
tlbr_boxes = outputs[:, :4]
identities = current_counter = outputs[:, -1]
ordered_identities = []
for identity in identities:
if not total_counter[identity]:
total_counter[identity] = max(total_counter) + 1
ordered_identities.append(total_counter[identity])
im = draw_bboxes(im, tlbr_boxes, ordered_identities, binary_masks=masks)
if args.out_txt:
for i in range(len(ordered_identities)):
tlbr = tlbr_boxes[i]
line = [frameID+1, ordered_identities[i], tlbr[0], tlbr[1], tlbr[2]-tlbr[0], tlbr[3]-tlbr[1], 1, 1, 1]
out_txt.write(",".join(str(item) for item in line) + "\n")
end = time.time()
im = cv2.putText(im, "Frame ID: "+str(frameID+1), (20,30), 0, 5e-3 * 200, (0,255,0), 2)
time_fps = "Time: {}s, fps: {}".format(round(end - start, 2), round(1 / (end - start), 2))
im = cv2.putText(im, time_fps,(20, 60), 0, 5e-3 * 200, (0,255,0), 3)
im = cv2.putText(im, os.path.basename(args.config_file) + ' ' + args.tracker, (20, 90), 0, 5e-3*200, (0,255,0), 3)
im = cv2.putText(im, "Current Hand Counter: "+str(len(current_counter)),(20, 120), 0, 5e-3 * 200, (0,255,0), 2)
im = cv2.putText(im, "Total Hand Counter: "+str(max(total_counter)), (20, 150), 0, 5e-3 * 200, (0,255,0), 2)
if args.display:
cv2.imshow("out_vid", im)
cv2.waitKey(1)
if args.out_vid:
out_vid.write(im)
frameID+=1
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 to (Deep)SORT demo")
parser.add_argument("--input",
type=str,
default='/media/data3/EgoCentric_Nafosted/micand26/gt/',
help='path to input video',
)
parser.add_argument(
"--config-file",
default="../detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml",
metavar="FILE",
help="path to detectron2 config file",
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--region_based",
type=int,
default=0,
help="1 if track on hand region only. ThanhHai's recommendation",
)
parser.add_argument("--tracker",
type=str,
default='sort',
help='tracker type, sort or deepsort',
)
parser.add_argument("--deepsort_checkpoint",
type=str,
default="deep_sort/deep/checkpoint/ckpt.t7",
help='Cosine metric learning model checkpoint',
)
parser.add_argument(
"--max_dist",
type=float,
default=0.3,
help="Max cosine distance",
)
parser.add_argument("--nms_max_overlap",
type=float,
default=0.5,
help='Non-max suppression threshold',
)
parser.add_argument(
"--display",
type=bool,
default=False,
help="Streaming frames to display",
)
parser.add_argument(
"--fps",
type=float,
default=30.0,
help="Output video Frame Per Second",
)
parser.add_argument(
"--out_vid",
type=str,
default="output_video.avi",
help="Output video",
)
parser.add_argument(
"--use_cuda",
type=str,
default="True",
help="Use GPU if true, else use CPU only",
)
parser.add_argument(
"--out_txt",
type=str,
default="output_txt.txt",
help="Write tracking results in MOT16 format to file seqtxt2write. To evaluate using pymotmetrics",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
return parser
if __name__ == "__main__":
main()