-
Notifications
You must be signed in to change notification settings - Fork 1
/
crc32.go
169 lines (145 loc) · 4.7 KB
/
crc32.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
// checksum. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for
// information.
//
// Polynomials are represented in LSB-first form also known as reversed representation.
//
// See http://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
// for information.
package main
import "sync"
// nolint
// The size of a CRC-32 checksum in bytes.
const CRC32Size = 4
// Predefined polynomials.
const (
// IEEE is by far and away the most common CRC-32 polynomial.
// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
IEEE = 0xedb88320
)
// Table is a 256-word table representing the polynomial for efficient processing.
type Table [256]uint32
// IEEETable is the table for the IEEE polynomial.
var IEEETable = simpleMakeTable(IEEE)
// ieeeTable8 is the slicing8Table for IEEE
var ieeeTable8 *slicing8Table
var updateIEEE func(crc uint32, p []byte) uint32
var ieeeOnce sync.Once
func ieeeInit() {
// Initialize the slicing-by-8 table.
ieeeTable8 = slicingMakeTable(IEEE)
updateIEEE = func(crc uint32, p []byte) uint32 {
return slicingUpdate(crc, ieeeTable8, p)
}
}
// crc32digest represents the partial evaluation of a checksum.
type crc32digest struct {
crc uint32
tab *Table
}
// nolint
// NewCRC32 creates a new hash.Hash32 computing the CRC-32 checksum
// using the polynomial represented by the Table.
// Its Sum method will lay the value out in big-endian byte order.
func NewCRC32(tab *Table) *crc32digest {
if tab == IEEETable {
ieeeOnce.Do(ieeeInit)
}
return &crc32digest{0, tab}
}
// nolint
// NewCRC32IEEE creates a new hash.Hash32 computing the CRC-32 checksum
// using the IEEE polynomial.
// Its Sum method will lay the value out in big-endian byte order.
func NewCRC32IEEE() *crc32digest { return NewCRC32(IEEETable) }
func (d *crc32digest) Size() int { return CRC32Size }
func (d *crc32digest) BlockSize() int { return 1 }
func (d *crc32digest) Reset() { d.crc = 0 }
func (d *crc32digest) Write(p []byte) (n int, err error) {
switch d.tab {
case IEEETable:
// We only create digest objects through NewCRC32() which takes care of
// initialization in this case.
d.crc = updateIEEE(d.crc, p)
default:
d.crc = simpleUpdate(d.crc, d.tab, p)
}
return len(p), nil
}
func (d *crc32digest) Sum32() uint32 { return d.crc }
func (d *crc32digest) Sum(in []byte) []byte {
s := d.Sum32()
return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
}
// simpleMakeTable allocates and constructs a Table for the specified
// polynomial. The table is suitable for use with the simple algorithm
// (simpleUpdate).
func simpleMakeTable(poly uint32) *Table {
t := new(Table)
simplePopulateTable(poly, t)
return t
}
// simplePopulateTable constructs a Table for the specified polynomial, suitable
// for use with simpleUpdate.
func simplePopulateTable(poly uint32, t *Table) {
for i := 0; i < 256; i++ {
crc := uint32(i)
for j := 0; j < 8; j++ {
if crc&1 == 1 {
crc = (crc >> 1) ^ poly
} else {
crc >>= 1
}
}
t[i] = crc
}
}
// simpleUpdate uses the simple algorithm to update the CRC, given a table that
// was previously computed using simpleMakeTable.
func simpleUpdate(crc uint32, tab *Table, p []byte) uint32 {
crc = ^crc
for _, v := range p {
crc = tab[byte(crc)^v] ^ (crc >> 8)
}
return ^crc
}
// Use slicing-by-8 when payload >= this value.
const slicing8Cutoff = 16
// slicing8Table is array of 8 Tables, used by the slicing-by-8 algorithm.
type slicing8Table [8]Table
// slicingMakeTable constructs a slicing8Table for the specified polynomial. The
// table is suitable for use with the slicing-by-8 algorithm (slicingUpdate).
func slicingMakeTable(poly uint32) *slicing8Table {
t := new(slicing8Table)
simplePopulateTable(poly, &t[0])
for i := 0; i < 256; i++ {
crc := t[0][i]
for j := 1; j < 8; j++ {
crc = t[0][crc&0xFF] ^ (crc >> 8)
t[j][i] = crc
}
}
return t
}
// slicingUpdate uses the slicing-by-8 algorithm to update the CRC, given a
// table that was previously computed using slicingMakeTable.
func slicingUpdate(crc uint32, tab *slicing8Table, p []byte) uint32 {
if len(p) >= slicing8Cutoff {
crc = ^crc
for len(p) > 8 {
crc ^= uint32(p[0]) | uint32(p[1])<<8 | uint32(p[2])<<16 | uint32(p[3])<<24
crc = tab[0][p[7]] ^ tab[1][p[6]] ^ tab[2][p[5]] ^ tab[3][p[4]] ^
tab[4][crc>>24] ^ tab[5][(crc>>16)&0xFF] ^
tab[6][(crc>>8)&0xFF] ^ tab[7][crc&0xFF]
p = p[8:]
}
crc = ^crc
}
if len(p) == 0 {
return crc
}
return simpleUpdate(crc, &tab[0], p)
}