Skip to content

Commit ffa6c60

Browse files
committed
[Docs] FIx links
1 parent 6f19150 commit ffa6c60

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

docs/source/conf.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -40,8 +40,8 @@
4040
"python": ("https://docs.python.org/3/", None),
4141
"sphinx": ("https://www.sphinx-doc.org/en/master/", None),
4242
"torch": ("https://pytorch.org/docs/master", None),
43-
"torchrl": ("https://pytorch.org/rl", None),
44-
"tensordict": ("https://pytorch.org/tensordict", None),
43+
"torchrl": ("https://pytorch.org/rl/stable/", None),
44+
"tensordict": ("https://pytorch.org/tensordict/stable", None),
4545
"benchmarl": ("https://benchmarl.readthedocs.io/en/latest/", None),
4646
}
4747
intersphinx_disabled_domains = ["std"]

docs/source/usage/notebooks.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,6 @@ In the following you can find a list of :colab:`null` Google Colab notebooks to
55

66
- :colab:`null` `Using a VMAS environment <https://colab.research.google.com/github/proroklab/VectorizedMultiAgentSimulator/blob/main/notebooks/VMAS_Use_vmas_environment.ipynb>`_. Here is a simple notebook that you can run to create, step and render any scenario in VMAS. It reproduces the ``use_vmas_env.py`` script in the ``examples`` folder
77
- :colab:`null` `Training VMAS in BenchMARL (suggested) <https://colab.research.google.com/github/facebookresearch/BenchMARL/blob/main/notebooks/run.ipynb>`_. In this notebook, we show how to use VMAS in BenchMARL, TorchRL's MARL training library
8-
- :colab:`null` `Training VMAS in TorchRL <https://colab.research.google.com/github/pytorch/rl/blob/gh-pages/_downloads/a977047786179278d12b52546e1c0da8/multiagent_ppo.ipynb>`_. In this notebook, `available in the TorchRL docs <https://pytorch.org/rl/tutorials/multiagent_ppo.html>`_, we show how to use any VMAS scenario in TorchRL. It will guide you through the full pipeline needed to train agents using MAPPO/IPPO.
9-
- :colab:`null` `Training competitive VMAS MPE in TorchRL <https://colab.research.google.com/github/pytorch/rl/blob/gh-pages/_downloads/d30bb6552cc07dec0f1da33382d3fa02/multiagent_competitive_ddpg.py>`_. In this notebook, `available in the TorchRL docs <https://pytorch.org/rl/main/tutorials/multiagent_competitive_ddpg.html>`_, we show how to solve a Competitive Multi-Agent Reinforcement Learning (MARL) problem using MADDPG/IDDPG.
8+
- :colab:`null` `Training VMAS in TorchRL <https://colab.research.google.com/github/pytorch/rl/blob/gh-pages/_downloads/a977047786179278d12b52546e1c0da8/multiagent_ppo.ipynb>`_. In this notebook, `available in the TorchRL docs <https://pytorch.org/rl/tutorials/multiagent_ppo.html>`__, we show how to use any VMAS scenario in TorchRL. It will guide you through the full pipeline needed to train agents using MAPPO/IPPO.
9+
- :colab:`null` `Training competitive VMAS MPE in TorchRL <https://colab.research.google.com/github/pytorch/rl/blob/gh-pages/_downloads/d30bb6552cc07dec0f1da33382d3fa02/multiagent_competitive_ddpg.py>`_. In this notebook, `available in the TorchRL docs <https://pytorch.org/rl/main/tutorials/multiagent_competitive_ddpg.html>`__, we show how to solve a Competitive Multi-Agent Reinforcement Learning (MARL) problem using MADDPG/IDDPG.
1010
- :colab:`null` `Training VMAS in RLlib <https://colab.research.google.com/github/proroklab/VectorizedMultiAgentSimulator/blob/main/notebooks/VMAS_RLlib.ipynb>`_. In this notebook, we show how to use any VMAS scenario in RLlib. It reproduces the ``rllib.py`` script in the ``examples`` folder.

0 commit comments

Comments
 (0)