-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathevaluate.py
179 lines (158 loc) · 7.28 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import sys
sys.path.append('core')
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from config.parser import parse_args
import datasets
from raft import RAFT
from tqdm import tqdm
from utils.utils import resize_data, load_ckpt
def forward_flow(args, model, image1, image2):
output = model(image1, image2, iters=args.iters, test_mode=True)
flow_final = output['flow'][-1]
info_final = output['info'][-1]
return flow_final, info_final
def calc_flow(args, model, image1, image2):
img1 = F.interpolate(image1, scale_factor=2 ** args.scale, mode='bilinear', align_corners=False)
img2 = F.interpolate(image2, scale_factor=2 ** args.scale, mode='bilinear', align_corners=False)
H, W = img1.shape[2:]
flow, info = forward_flow(args, model, img1, img2)
flow_down = F.interpolate(flow, scale_factor=0.5 ** args.scale, mode='bilinear', align_corners=False) * (0.5 ** args.scale)
info_down = F.interpolate(info, scale_factor=0.5 ** args.scale, mode='area')
return flow_down, info_down
@torch.no_grad()
def validate_sintel(args, model):
""" Peform validation using the Sintel (train) split """
for dstype in ['clean', 'final']:
val_dataset = datasets.MpiSintel(split='training', dstype=dstype)
val_loader = data.DataLoader(val_dataset, batch_size=8,
pin_memory=False, shuffle=False, num_workers=16, drop_last=False)
epe_list = np.array([], dtype=np.float32)
px1_list = np.array([], dtype=np.float32)
px3_list = np.array([], dtype=np.float32)
px5_list = np.array([], dtype=np.float32)
print(f"load data success {len(val_loader)}")
for i_batch, data_blob in enumerate(val_loader):
image1, image2, flow_gt, valid = [x.cuda(non_blocking=True) for x in data_blob]
flow, info = calc_flow(args, model, image1, image2)
epe = torch.sum((flow - flow_gt)**2, dim=1).sqrt()
px1 = (epe < 1.0).float().mean(dim=[1, 2]).cpu().numpy()
px3 = (epe < 3.0).float().mean(dim=[1, 2]).cpu().numpy()
px5 = (epe < 5.0).float().mean(dim=[1, 2]).cpu().numpy()
epe = epe.mean(dim=[1, 2]).cpu().numpy()
epe_list = np.append(epe_list, epe)
px1_list = np.append(px1_list, px1)
px3_list = np.append(px3_list, px3)
px5_list = np.append(px5_list, px5)
epe = np.mean(epe_list)
px1 = np.mean(px1_list)
px3 = np.mean(px3_list)
px5 = np.mean(px5_list)
print(f"Validation {dstype} EPE: {epe}, 1px: {100 * (1 - px1)}")
@torch.no_grad()
def validate_kitti(args, model):
""" Peform validation using the KITTI-2015 (train) split """
val_dataset = datasets.KITTI(split='training')
val_loader = data.DataLoader(val_dataset, batch_size=1,
pin_memory=False, shuffle=False, num_workers=16, drop_last=False)
print(f"load data success {len(val_loader)}")
epe_list = np.array([], dtype=np.float32)
num_valid_pixels = 0
out_valid_pixels = 0
for i_batch, data_blob in enumerate(val_loader):
image1, image2, flow_gt, valid_gt = [x.cuda(non_blocking=True) for x in data_blob]
flow, info = calc_flow(args, model, image1, image2)
epe = torch.sum((flow - flow_gt)**2, dim=1).sqrt()
mag = torch.sum(flow_gt**2, dim=1).sqrt()
val = valid_gt >= 0.5
out = ((epe > 3.0) & ((epe/mag) > 0.05)).float()
for b in range(out.shape[0]):
epe_list = np.append(epe_list, epe[b][val[b]].mean().cpu().numpy())
out_valid_pixels += out[b][val[b]].sum().cpu().numpy()
num_valid_pixels += val[b].sum().cpu().numpy()
epe = np.mean(epe_list)
f1 = 100 * out_valid_pixels / num_valid_pixels
print("Validation KITTI: %f, %f" % (epe, f1))
return {'kitti-epe': epe, 'kitti-f1': f1}
@torch.no_grad()
def validate_spring(args, model):
""" Peform validation using the Spring (val) split """
val_dataset = datasets.SpringFlowDataset(split='val')
val_loader = data.DataLoader(val_dataset, batch_size=4,
pin_memory=False, shuffle=False, num_workers=16, drop_last=False)
epe_list = np.array([], dtype=np.float32)
px1_list = np.array([], dtype=np.float32)
px3_list = np.array([], dtype=np.float32)
px5_list = np.array([], dtype=np.float32)
print(f"load data success {len(val_loader)}")
pbar = tqdm(total=len(val_loader))
for i_batch, data_blob in enumerate(val_loader):
image1, image2, flow_gt, valid = [x.cuda(non_blocking=True) for x in data_blob]
flow, info = calc_flow(args, model, image1, image2)
epe = torch.sum((flow - flow_gt)**2, dim=1).sqrt()
px1 = (epe < 1.0).float().mean(dim=[1, 2]).cpu().numpy()
px3 = (epe < 3.0).float().mean(dim=[1, 2]).cpu().numpy()
px5 = (epe < 5.0).float().mean(dim=[1, 2]).cpu().numpy()
epe = epe.mean(dim=[1, 2]).cpu().numpy()
epe_list = np.append(epe_list, epe)
px1_list = np.append(px1_list, px1)
px3_list = np.append(px3_list, px3)
px5_list = np.append(px5_list, px5)
pbar.update(1)
pbar.close()
epe = np.mean(epe_list)
px1 = np.mean(px1_list)
px3 = np.mean(px3_list)
px5 = np.mean(px5_list)
print(f"Validation Spring EPE: {epe}, 1px: {100 * (1 - px1)}")
@torch.no_grad()
def validate_middlebury(args, model):
""" Peform validation using the Middlebury (public) split """
val_dataset = datasets.Middlebury()
val_loader = data.DataLoader(val_dataset, batch_size=1,
pin_memory=False, shuffle=False, num_workers=16, drop_last=False)
print(f"load data success {len(val_loader)}")
epe_list = np.array([], dtype=np.float32)
num_valid_pixels = 0
out_valid_pixels = 0
for i_batch, data_blob in enumerate(val_loader):
image1, image2, flow_gt, valid_gt = [x.cuda(non_blocking=True) for x in data_blob]
flow, info = calc_flow(args, model, image1, image2)
epe = torch.sum((flow - flow_gt)**2, dim=1).sqrt()
mag = torch.sum(flow_gt**2, dim=1).sqrt()
val = valid_gt >= 0.5
out = ((epe > 3.0) & ((epe/mag) > 0.05)).float()
for b in range(out.shape[0]):
epe_list = np.append(epe_list, epe[b][val[b]].mean().cpu().numpy())
out_valid_pixels += out[b][val[b]].sum().cpu().numpy()
num_valid_pixels += val[b].sum().cpu().numpy()
epe = np.mean(epe_list)
f1 = 100 * out_valid_pixels / num_valid_pixels
print("Validation middlebury: %f, %f" % (epe, f1))
def eval(args):
args.gpus = [0]
model = RAFT(args)
load_ckpt(model, args.model)
model = model.cuda()
model.eval()
with torch.no_grad():
if args.dataset == 'spring':
validate_spring(args, model)
elif args.dataset == 'sintel':
validate_sintel(args, model)
elif args.dataset == 'kitti':
validate_kitti(args, model)
elif args.dataset == 'middlebury':
validate_middlebury(args, model)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str)
parser.add_argument('--model', help='checkpoint path', required=True, type=str)
args = parse_args(parser)
eval(args)
if __name__ == '__main__':
main()