-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.py
executable file
·67 lines (50 loc) · 2.21 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from simpletransformers.classification import ClassificationModel
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
def load_dataset(filename):
data = read_csv(filename,names=["questions","tile"],header=None)
return data
# load the dataset
data = load_dataset('train.csv')
data = data.iloc[1:]
data["tile"] = labelencoder.fit_transform(data["tile"])
total_classes = len(labelencoder.classes_)
bert_base_model = ClassificationModel('bert', '/bert_base/outputs', num_labels=total_classes,
use_cuda=False)
albert_model = ClassificationModel('albert', 'albert/outputs', num_labels=total_classes,
use_cuda=False)
distilbert_model = ClassificationModel('distilbert', '/distilbert/outputs', num_labels=total_classes,
use_cuda=False)
roberta_model = ClassificationModel('roberta', '/roberta/outputs', num_labels=total_classes,
use_cuda=False)
bert_large_model = ClassificationModel('bert', '/bert_large/outputs', num_labels=total_classes,
use_cuda=False)
xlnet_model = ClassificationModel('xlnet', '/XLNet/outputs', num_labels=total_classes,
use_cuda=False)
query = ["Name the scar-faced bounty hunter of The Old West"]
print("bert_base prediction")
prediction, raw_outputs = bert_base_model.predict(query)
predicted_tile = labelencoder.inverse_transform(prediction)
print(predicted_tile)
print("albert prediction")
prediction, raw_outputs = albert_model.predict(query)
predicted_tile = labelencoder.inverse_transform(prediction)
print(predicted_tile)
print("distilbert prediction")
prediction, raw_outputs = distilbert_model.predict(query)
predicted_tile = labelencoder.inverse_transform(prediction)
print(predicted_tile)
print("roberta prediction")
prediction, raw_outputs = roberta_model.predict(query)
predicted_tile = labelencoder.inverse_transform(prediction)
print(predicted_tile)
print("bert_large prediction")
prediction, raw_outputs = bert_large_model.predict(query)
predicted_tile = labelencoder.inverse_transform(prediction)
print(predicted_tile)
print("xlnet prediction")
prediction, raw_outputs = xlnet_model.predict(query)
predicted_tile = labelencoder.inverse_transform(prediction)
print(predicted_tile)