-
Notifications
You must be signed in to change notification settings - Fork 412
/
export.py
130 lines (106 loc) · 4.99 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
Usage:
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""
import argparse
import sys
import time
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
import models
from models.common import NMS, NMS_Export
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device
def export_onnx(model, img, dynamic, output_names=None):
try:
import onnx
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
output_names=['classes', 'boxes'] if y is None else output_names,
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
print('ONNX export success, saved as %s' % f)
except Exception as e:
print('ONNX export failure: %s' % e)
# Finish
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='model_zoo/v5lite-e.pt', help='weights path') # from yolov5/models/
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width
parser.add_argument('--concat', action='store_true', help='concat or not')
parser.add_argument('--mnnd', action='store_true', help='mnn decode or not')
parser.add_argument('--mnne', action='store_true', help='mnn end2end or not')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--end2end', action='store_true', help='export the nms part in ONNX model') # ONNX-only, #opt.grid has to be set True for nms export to work
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
model = attempt_load(opt.weights, map_location=device) # load FP32 model
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, models.yolo.Detect):
if opt.concat:
m.forward = m.cat_forward
elif opt.mnnd:
m.forward = m.mnnd_forward
elif opt.mnne:
m.forward = m.mnne_forward
elif opt.end2end:
m.forward = m.end2end_forward
else:
m.forward
model.model[-1].export = not opt.grid # set Detect() layer grid export
print(model.model[-1])
y = model(img) # dry run
if opt.end2end:
#nms = NMS(conf=0.001)
#nms_export = NMS_Export(conf=0.001)
##y_export = nms_export(y)
##y = nms(y)
##assert (torch.sum(torch.abs(y_export[0]-y[0]))<1e-6)
#model_nms = torch.nn.Sequential(model, nms_export)
#model_nms.eval()
output_names = ['outputs']
elif opt.concat or opt.mnnd or opt.mnne:
output_names = ['outputs']
dynamic = opt.dynamic
if opt.end2end:
# print(model_nms)
export_onnx(model, img, dynamic, output_names)
elif opt.concat:
# print(model)
export_onnx(model, img, dynamic, output_names)
elif opt.mnnd:
export_onnx(model, img, dynamic, output_names)
elif opt.mnne:
export_onnx(model, img, dynamic, output_names)
else:
export_onnx(model, img, dynamic)