Skip to content

errors during cell classification #20

@carloelle

Description

@carloelle

Hi,

I have a Seurat object named seurat_test

An object of class Seurat 
20387 features across 16489 samples within 1 assay 
Active assay: RNA (20387 features, 2000 variable features)
 1 dimensional reduction calculated: pca

and a trained scPred object

✓  Prediction variable = CellType 
✓  Discriminant features per cell type
✓  Training model(s)
Summary

|Cell type                    |     n| Features|Method    |   ROC|  Sens|  Spec|
|:----------------------------|-----:|--------:|:---------|-----:|-----:|-----:|
|CD14+ Monocyte               |  1458|       50|svmRadial | 0.996| 0.760| 0.994|
|CD19+ B                      |  4184|       50|svmRadial | 0.963| 0.674| 0.998|
|CD34+                        |   141|       50|svmRadial | 0.999| 0.893| 1.000|
|CD4+ T Helper2               |    69|       50|svmRadial | 0.693| 0.000| 1.000|
|CD4+/CD25 T Reg              |  4587|       50|svmRadial | 0.911| 0.321| 0.987|
|CD4+/CD45RA+/CD25- Naive T   |  1392|       50|svmRadial | 0.814| 0.002| 1.000|
|CD4+/CD45RO+ Memory          |  2273|       50|svmRadial | 0.852| 0.086| 0.995|

but when I do scPredict(seurat_test, scpred), I get stuck at the following errors:

●  Matching reference with new dataset...
	 ─ 2000 features present in reference loadings
	 ─ 2000 features shared between reference and new dataset
	 ─ 100% of features in the reference are present in new dataset
●  Aligning new data to reference...
Harmony 1/20
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony 2/20
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony 3/20
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony converged after 3 iterations
●  Classifying cells...
Error in `.rowNamesDF<-`(x, value = value) : invalid 'row.names' length
In addition: Warning message:
In method$prob(modelFit = modelFit, newdata = newdata, submodels = param) :
  kernlab class probability calculations failed; returning NAs

Any suggestion on how to proceed? I generated seurat_test and seurat_train splicing the original dataset using a 4-fold cross-validation method, scPred is a scpred object trained on seurat_train.

Cheers,
Carlo

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] pbapply_1.4-3               scPred_1.9.0                magrittr_2.0.1              doParallel_1.0.16           iterators_1.0.13           
 [6] foreach_1.5.1               SeuratObject_4.0.1          Seurat_4.0.1                SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[11] Biobase_2.50.0              GenomicRanges_1.42.0        GenomeInfoDb_1.26.7         IRanges_2.24.1              S4Vectors_0.28.1           
[16] BiocGenerics_0.36.1         MatrixGenerics_1.2.1        matrixStats_0.58.0          forcats_0.5.1               stringr_1.4.0              
[21] dplyr_1.0.6                 purrr_0.3.4                 readr_1.4.0                 tidyr_1.1.3                 tibble_3.1.2               
[26] ggplot2_3.3.3               tidyverse_1.3.1            

loaded via a namespace (and not attached):
  [1] readxl_1.3.1           backports_1.2.1        plyr_1.8.6             igraph_1.2.6           lazyeval_0.2.2         splines_4.0.3         
  [7] listenv_0.8.0          scattermore_0.7        digest_0.6.27          htmltools_0.5.1.1      fansi_0.4.2            tensor_1.5            
 [13] cluster_2.1.2          ROCR_1.0-11            recipes_0.1.16         globals_0.14.0         modelr_0.1.8           gower_0.2.2           
 [19] spatstat.sparse_2.0-0  colorspace_2.0-1       rvest_1.0.0            ggrepel_0.9.1          haven_2.4.1            xfun_0.23             
 [25] RCurl_1.98-1.3         crayon_1.4.1           jsonlite_1.7.2         spatstat.data_2.1-0    survival_3.2-11        zoo_1.8-9             
 [31] glue_1.4.2             polyclip_1.10-0        gtable_0.3.0           zlibbioc_1.36.0        XVector_0.30.0         ipred_0.9-11          
 [37] leiden_0.3.7           DelayedArray_0.16.3    kernlab_0.9-29         future.apply_1.7.0     abind_1.4-5            scales_1.1.1          
 [43] DBI_1.1.1              miniUI_0.1.1.1         Rcpp_1.0.6             viridisLite_0.4.0      xtable_1.8-4           reticulate_1.20       
 [49] spatstat.core_2.1-2    lava_1.6.9             prodlim_2019.11.13     htmlwidgets_1.5.3      httr_1.4.2             RColorBrewer_1.1-2    
 [55] ellipsis_0.3.2         ica_1.0-2              pkgconfig_2.0.3        nnet_7.3-16            uwot_0.1.10            dbplyr_2.1.1          
 [61] deldir_0.2-10          utf8_1.2.1             caret_6.0-88           tidyselect_1.1.1       rlang_0.4.11           reshape2_1.4.4        
 [67] later_1.2.0            munsell_0.5.0          cellranger_1.1.0       tools_4.0.3            cli_2.5.0              generics_0.1.0        
 [73] broom_0.7.6            ggridges_0.5.3         fastmap_1.1.0          goftest_1.2-2          ModelMetrics_1.2.2.2   knitr_1.33            
 [79] fs_1.5.0               fitdistrplus_1.1-3     RANN_2.6.1             future_1.21.0          nlme_3.1-152           mime_0.10             
 [85] xml2_1.3.2             rstudioapi_0.13        compiler_4.0.3         beeswarm_0.3.1         plotly_4.9.3           png_0.1-7             
 [91] spatstat.utils_2.1-0   reprex_2.0.0           stringi_1.6.2          highr_0.9              lattice_0.20-44        Matrix_1.3-3          
 [97] vctrs_0.3.8            pillar_1.6.1           lifecycle_1.0.0        spatstat.geom_2.1-0    lmtest_0.9-38          RcppAnnoy_0.0.18      
[103] bitops_1.0-7           data.table_1.14.0      cowplot_1.1.1          irlba_2.3.3            httpuv_1.6.1           patchwork_1.1.1       
[109] R6_2.5.0               promises_1.2.0.1       KernSmooth_2.23-20     gridExtra_2.3          vipor_0.4.5            parallelly_1.25.0     
[115] codetools_0.2-18       MASS_7.3-54            assertthat_0.2.1       withr_2.4.2            sctransform_0.3.2      GenomeInfoDbData_1.2.4
[121] harmony_1.0            mgcv_1.8-35            hms_1.0.0              grid_4.0.3             rpart_4.1-15           timeDate_3043.102     
[127] class_7.3-19           Rtsne_0.15             pROC_1.17.0.1          shiny_1.6.0            lubridate_1.7.10       tinytex_0.31          
[133] ggbeeswarm_0.6.0   

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions