-
Notifications
You must be signed in to change notification settings - Fork 20
Open
Description
Hi,
I have a Seurat object named seurat_test
An object of class Seurat
20387 features across 16489 samples within 1 assay
Active assay: RNA (20387 features, 2000 variable features)
1 dimensional reduction calculated: pca
and a trained scPred object
✓ Prediction variable = CellType
✓ Discriminant features per cell type
✓ Training model(s)
Summary
|Cell type | n| Features|Method | ROC| Sens| Spec|
|:----------------------------|-----:|--------:|:---------|-----:|-----:|-----:|
|CD14+ Monocyte | 1458| 50|svmRadial | 0.996| 0.760| 0.994|
|CD19+ B | 4184| 50|svmRadial | 0.963| 0.674| 0.998|
|CD34+ | 141| 50|svmRadial | 0.999| 0.893| 1.000|
|CD4+ T Helper2 | 69| 50|svmRadial | 0.693| 0.000| 1.000|
|CD4+/CD25 T Reg | 4587| 50|svmRadial | 0.911| 0.321| 0.987|
|CD4+/CD45RA+/CD25- Naive T | 1392| 50|svmRadial | 0.814| 0.002| 1.000|
|CD4+/CD45RO+ Memory | 2273| 50|svmRadial | 0.852| 0.086| 0.995|
but when I do scPredict(seurat_test, scpred), I get stuck at the following errors:
● Matching reference with new dataset...
─ 2000 features present in reference loadings
─ 2000 features shared between reference and new dataset
─ 100% of features in the reference are present in new dataset
● Aligning new data to reference...
Harmony 1/20
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony 2/20
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony 3/20
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony converged after 3 iterations
● Classifying cells...
Error in `.rowNamesDF<-`(x, value = value) : invalid 'row.names' length
In addition: Warning message:
In method$prob(modelFit = modelFit, newdata = newdata, submodels = param) :
kernlab class probability calculations failed; returning NAs
Any suggestion on how to proceed? I generated seurat_test and seurat_train splicing the original dataset using a 4-fold cross-validation method, scPred is a scpred object trained on seurat_train.
Cheers,
Carlo
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] pbapply_1.4-3 scPred_1.9.0 magrittr_2.0.1 doParallel_1.0.16 iterators_1.0.13
[6] foreach_1.5.1 SeuratObject_4.0.1 Seurat_4.0.1 SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[11] Biobase_2.50.0 GenomicRanges_1.42.0 GenomeInfoDb_1.26.7 IRanges_2.24.1 S4Vectors_0.28.1
[16] BiocGenerics_0.36.1 MatrixGenerics_1.2.1 matrixStats_0.58.0 forcats_0.5.1 stringr_1.4.0
[21] dplyr_1.0.6 purrr_0.3.4 readr_1.4.0 tidyr_1.1.3 tibble_3.1.2
[26] ggplot2_3.3.3 tidyverse_1.3.1
loaded via a namespace (and not attached):
[1] readxl_1.3.1 backports_1.2.1 plyr_1.8.6 igraph_1.2.6 lazyeval_0.2.2 splines_4.0.3
[7] listenv_0.8.0 scattermore_0.7 digest_0.6.27 htmltools_0.5.1.1 fansi_0.4.2 tensor_1.5
[13] cluster_2.1.2 ROCR_1.0-11 recipes_0.1.16 globals_0.14.0 modelr_0.1.8 gower_0.2.2
[19] spatstat.sparse_2.0-0 colorspace_2.0-1 rvest_1.0.0 ggrepel_0.9.1 haven_2.4.1 xfun_0.23
[25] RCurl_1.98-1.3 crayon_1.4.1 jsonlite_1.7.2 spatstat.data_2.1-0 survival_3.2-11 zoo_1.8-9
[31] glue_1.4.2 polyclip_1.10-0 gtable_0.3.0 zlibbioc_1.36.0 XVector_0.30.0 ipred_0.9-11
[37] leiden_0.3.7 DelayedArray_0.16.3 kernlab_0.9-29 future.apply_1.7.0 abind_1.4-5 scales_1.1.1
[43] DBI_1.1.1 miniUI_0.1.1.1 Rcpp_1.0.6 viridisLite_0.4.0 xtable_1.8-4 reticulate_1.20
[49] spatstat.core_2.1-2 lava_1.6.9 prodlim_2019.11.13 htmlwidgets_1.5.3 httr_1.4.2 RColorBrewer_1.1-2
[55] ellipsis_0.3.2 ica_1.0-2 pkgconfig_2.0.3 nnet_7.3-16 uwot_0.1.10 dbplyr_2.1.1
[61] deldir_0.2-10 utf8_1.2.1 caret_6.0-88 tidyselect_1.1.1 rlang_0.4.11 reshape2_1.4.4
[67] later_1.2.0 munsell_0.5.0 cellranger_1.1.0 tools_4.0.3 cli_2.5.0 generics_0.1.0
[73] broom_0.7.6 ggridges_0.5.3 fastmap_1.1.0 goftest_1.2-2 ModelMetrics_1.2.2.2 knitr_1.33
[79] fs_1.5.0 fitdistrplus_1.1-3 RANN_2.6.1 future_1.21.0 nlme_3.1-152 mime_0.10
[85] xml2_1.3.2 rstudioapi_0.13 compiler_4.0.3 beeswarm_0.3.1 plotly_4.9.3 png_0.1-7
[91] spatstat.utils_2.1-0 reprex_2.0.0 stringi_1.6.2 highr_0.9 lattice_0.20-44 Matrix_1.3-3
[97] vctrs_0.3.8 pillar_1.6.1 lifecycle_1.0.0 spatstat.geom_2.1-0 lmtest_0.9-38 RcppAnnoy_0.0.18
[103] bitops_1.0-7 data.table_1.14.0 cowplot_1.1.1 irlba_2.3.3 httpuv_1.6.1 patchwork_1.1.1
[109] R6_2.5.0 promises_1.2.0.1 KernSmooth_2.23-20 gridExtra_2.3 vipor_0.4.5 parallelly_1.25.0
[115] codetools_0.2-18 MASS_7.3-54 assertthat_0.2.1 withr_2.4.2 sctransform_0.3.2 GenomeInfoDbData_1.2.4
[121] harmony_1.0 mgcv_1.8-35 hms_1.0.0 grid_4.0.3 rpart_4.1-15 timeDate_3043.102
[127] class_7.3-19 Rtsne_0.15 pROC_1.17.0.1 shiny_1.6.0 lubridate_1.7.10 tinytex_0.31
[133] ggbeeswarm_0.6.0
Metadata
Metadata
Assignees
Labels
No labels