The library has been tested using Agda 2.6.3.
-
A golden testing library in
Test.Golden
. This allows you to run a set of tests and make sure their output matches an expectedgolden
value. The test runner has many options: filtering tests by name, dumping the list of failures to a file, timing the runs, coloured output, etc. Cf. the comments inTest.Golden
and the standard library's own tests intests/
for documentation on how to use the library. -
A new tactic
cong!
available fromTactic.Cong
which automatically infers the argument tocong
for you via anti-unification. -
Improved the
solve
tactic inTactic.RingSolver
to work in a much wider range of situations. -
Added
⌊log₂_⌋
and⌈log₂_⌉
on Natural Numbers. -
A massive refactoring of the unindexed Functor/Applicative/Monad hierarchy and the MonadReader / MonadState type classes. These are now usable with instance arguments as demonstrated in the tests/monad examples.
-
The following operators were missing a fixity declaration, which has now been fixed -
infixr 5 _∷_ (Codata.Guarded.Stream) infix 4 _[_] (Codata.Guarded.Stream) infixr 5 _∷_ (Codata.Guarded.Stream.Relation.Binary.Pointwise) infix 4 _≈∞_ (Codata.Guarded.Stream.Relation.Binary.Pointwise) infixr 5 _∷_ (Codata.Musical.Colist) infix 4 _≈_ (Codata.Musical.Conat) infixr 5 _∷_ (Codata.Musical.Colist.Bisimilarity) infixr 5 _∷_ (Codata.Musical.Colist.Relation.Unary.All) infixr 5 _∷_ (Codata.Sized.Colist) infixr 5 _∷_ (Codata.Sized.Covec) infixr 5 _∷_ (Codata.Sized.Cowriter) infixl 1 _>>=_ (Codata.Sized.Cowriter) infixr 5 _∷_ (Codata.Sized.Stream) infixr 5 _∷_ (Codata.Sized.Colist.Bisimilarity) infix 4 _ℕ≤?_ (Codata.Sized.Conat.Properties) infixr 5 _∷_ (Codata.Sized.Covec.Bisimilarity) infixr 5 _∷_ (Codata.Sized.Cowriter.Bisimilarity) infixr 5 _∷_ (Codata.Sized.Stream.Bisimilarity) infixr 8 _⇒_ _⊸_ (Data.Container.Core) infixr -1 _<$>_ _<*>_ (Data.Container.FreeMonad) infixl 1 _>>=_ (Data.Container.FreeMonad) infix 5 _▷_ (Data.Container.Indexed) infix 4 _≈_ (Data.Float.Base) infixl 7 _⊓′_ (Data.Nat.Base) infixl 6 _⊔′_ (Data.Nat.Base) infixr 8 _^_ (Data.Nat.Base) infix 4 _!≢0 _!*_!≢0 (Data.Nat.Properties) infix 4 _≃?_ (Data.Rational.Unnormalised.Properties) infix 4 _≈ₖᵥ_ (Data.Tree.AVL.Map.Membership.Propositional) infix 4 _<_ (Induction.WellFounded) infix -1 _$ⁿ_ (Data.Vec.N-ary) infix 4 _≋_ (Data.Vec.Functional.Relation.Binary.Equality.Setoid) infix 4 _≟_ (Reflection.AST.Definition) infix 4 _≡ᵇ_ (Reflection.AST.Literal) infix 4 _≈?_ _≟_ _≈_ (Reflection.AST.Meta) infix 4 _≈?_ _≟_ _≈_ (Reflection.AST.Name) infix 4 _≟-Telescope_ (Reflection.AST.Term) infix 4 _≟_ (Reflection.AST.Argument.Information) infix 4 _≟_ (Reflection.AST.Argument.Modality) infix 4 _≟_ (Reflection.AST.Argument.Quantity) infix 4 _≟_ (Reflection.AST.Argument.Relevance) infix 4 _≟_ (Reflection.AST.Argument.Visibility) infixr 8 _^_ (Function.Endomorphism.Propositional) infixr 8 _^_ (Function.Endomorphism.Setoid) infix 4 _≃_ (Function.HalfAdjointEquivalence) infix 4 _≈_ _≈ᵢ_ _≤_ (Function.Metric.Bundles) infixl 6 _∙_ (Function.Metric.Bundles) infix 4 _≈_ (Function.Metric.Nat.Bundles) infix 3 _←_ _↢_ (Function.Related) infix 4 _ℕ<_ _ℕ≤infinity _ℕ≤_ (Codata.Sized.Conat) infix 6 _ℕ+_ _+ℕ_ (Codata.Sized.Conat) infixl 4 _+ _* (Data.List.Kleene.Base) infixr 4 _++++_ _+++*_ _*+++_ _*++*_ (Data.List.Kleene.Base) infix 4 _[_]* _[_]+ (Data.List.Kleene.Base) infix 4 _≢∈_ (Data.List.Membership.Propositional) infixr 5 _`∷_ (Data.List.Reflection) infix 4 _≡?_ (Data.List.Relation.Binary.Equality.DecPropositional) infixr 5 _++ᵖ_ (Data.List.Relation.Binary.Prefix.Heterogeneous) infixr 5 _++ˢ_ (Data.List.Relation.Binary.Suffix.Heterogeneous) infixr 5 _++_ _++[] (Data.List.Relation.Ternary.Appending.Propositional) infixr 5 _∷=_ (Data.List.Relation.Unary.Any) infixr 5 _++_ (Data.List.Ternary.Appending) infixr 2 _×-⇔_ _×-↣_ _×-↞_ _×-↠_ _×-↔_ _×-cong_ (Data.Product.Function.NonDependent.Propositional) infixr 2 _×-⟶_ (Data.Product.Function.NonDependent.Setoid) infixr 2 _×-equivalence_ _×-injection_ _×-left-inverse_ (Data.Product.Function.NonDependent.Setoid) infixr 2 _×-surjection_ _×-inverse_ (Data.Product.Function.NonDependent.Setoid) infixr 1 _⊎-⇔_ _⊎-↣_ _⊎-↞_ _⊎-↠_ _⊎-↔_ _⊎-cong_ (Data.Sum.Function.Propositional) infixr 1 _⊎-⟶_ (Data.Sum.Function.Setoid) infixr 1 _⊎-equivalence_ _⊎-injection_ _⊎-left-inverse_ (Data.Sum.Function.Setoid) infixr 1 _⊎-surjection_ _⊎-inverse_ (Data.Sum.Function.Setoid) infix 8 _⁻¹ (Data.Parity.Base) infixr 5 _`∷_ (Data.Vec.Reflection) infixr 5 _∷=_ (Data.Vec.Membership.Setoid) infix 4 _≟H_ _≟N_ (Algebra.Solver.Ring) infix 4 _≈_ (Relation.Binary.Bundles) infixl 6 _∩_ (Relation.Binary.Construct.Intersection) infix 4 _<₋_ (Relation.Binary.Construct.Add.Infimum.Strict) infix 4 _≈∙_ (Relation.Binary.Construct.Add.Point.Equality) infix 4 _≤⁺_ _≤⊤⁺ (Relation.Binary.Construct.Add.Supremum.NonStrict) infixr 5 _∷ʳ_ (Relation.Binary.Construct.Closure.Transitive) infixr 5 _∷_ (Codata.Guarded.Stream.Relation.Unary.All) infixr 5 _∷_ (Foreign.Haskell.List.NonEmpty) infix 4 _≈_ (Function.Metric.Rational.Bundles) infixl 6 _ℕ+_ (Level.Literals) infixr 6 _∪_ (Relation.Binary.Construct.Union) infixl 6 _+ℤ_ (Relation.Binary.HeterogeneousEquality.Quotients.Examples) infix 4 _≉_ _≈ᵢ_ _≤ᵢ_ (Relation.Binary.Indexed.Homogeneous.Bundles) infixr 5 _∷ᴹ_ _∷⁻¹ᴹ_ (Text.Regex.Search)
-
In
System.Exit
, theExitFailure
constructor is now carrying an integer rather than a natural. The previous binding was incorrectly assuming that all exit codes where non-negative. -
In
/-monoˡ-≤
inData.Nat.DivMod
the parametero
was implicit but not inferrable. It has been changed to be explicit. -
In
+-distrib-/-∣ʳ
inData.Nat.DivMod
the parameterm
was implicit but not inferrable, whilen
is explicit but inferrable. They have been changed. -
In
Function.Definitions
the definitions ofSurjection
,Inverseˡ
,Inverseʳ
were not being re-exported correctly and therefore had an unsolved meta-variable whenever this module was explicitly parameterised. This has been fixed. -
Add module
Algebra.Module
that re-exports the contents ofAlgebra.Module.(Definitions/Structures/Bundles)
-
Various module-like bundles in
Algebra.Module.Bundles
were missing a fixity declaration for_*ᵣ_
. This has been fixed. -
In
Algebra.Definitions.RawSemiring
the recordprime
addp∤1 : p ∤ 1#
to the field. -
In
Data.List.Relation.Ternary.Appending.Setoid
we re-export specialised versions of the constructors using the setoid's carrier set. Prior to that, the constructor were re-exported in their full generality which would lead to unsolved meta variables at their use sites. -
In
Data.Container.FreeMonad
, we give a direct definition of_⋆_
as an inductive type rather than encoding it as an instance ofμ
. This ensures Agda notices thatC ⋆ X
is strictly positive inX
which in turn allows us to use the free monad when defining auxiliary (co)inductive types (cf. theTap
example inREADME.Data.Container.FreeMonad
). -
In
Data.Maybe.Base
the fixity declaration of_<∣>_
was missing. This has been fixed.
- All modules and names that were deprecated in v1.2 and before have been removed.
- Due to the change in Agda 2.6.2 where sized types are no longer compatible
with the
--safe
flag, it has become clear that a third variant of codata will be needed using coinductive records. Therefore all existing modules inCodata
which used sized types have been moved inside a new folder namedSized
, e.g.Codata.Stream
has becomeCodata.Sized.Stream
.
- As observed by Wen Kokke in Issue #1636, it no longer really makes sense
to group the modules which correspond to the variety of concepts of
(effectful) type constructor arising in functional programming (esp. in haskell)
such as
Monad
,Applicative
,Functor
, etc, underCategory.*
, as this obstructs the importing of theagda-categories
development into the Standard Library, and moreover needlessly restricts the applicability of categorical concepts to this (highly specific) mode of use. Correspondingly, client modules grouped under*.Categorical.*
which exploit such structure for effectful programming have been renamed*.Effectful
, with the originals being deprecated.
-
In
Text.Pretty
,Doc
is now a record rather than a type alias. This helps Agda reconstruct thewidth
parameter when the module is opened without it being applied. In particular this allows users to write width-generic pretty printers and only pick a width when calling the renderer by using this import style:open import Text.Pretty using (Doc; render) -- ^-- no width parameter for Doc & render open module Pretty {w} = Text.Pretty w hiding (Doc; render) -- ^-- implicit width parameter for the combinators pretty : Doc w pretty = ? -- you can use the combinators here and there won't be any -- issues related to the fact that `w` cannot be reconstructed -- anymore main = do -- you can now use the same pretty with different widths: putStrLn $ render 40 pretty putStrLn $ render 80 pretty
-
In
Text.Regex.Search
thesearchND
function finding infix matches has been tweaked to make sure the returned solution is a local maximum in terms of length. It used to be that we would make the match start as late as possible and finish as early as possible. It's now the reverse.So
[a-zA-Z]+.agdai?
run on "the path _build/Main.agdai corresponds to" will return "Main.agdai" when it used to be happy to just return "n.agda".
-
In order to improve modularity and consistency with
Relation.Binary.Lattice
, the structures & bundles forSemilattice
,Lattice
,DistributiveLattice
&BooleanAlgebra
have been moved out of theAlgebra
modules and into their own hierarchy inAlgebra.Lattice
. -
All submodules, (e.g.
Algebra.Properties.Semilattice
orAlgebra.Morphism.Lattice
) have been moved to the corresponding place underAlgebra.Lattice
(e.g.Algebra.Lattice.Properties.Semilattice
orAlgebra.Lattice.Morphism.Lattice
). See theDeprecated modules
section below for full details. -
Changed definition of
IsDistributiveLattice
andIsBooleanAlgebra
so that they are no longer right-biased which hinders compositionality. More concretely,IsDistributiveLattice
now has fields:∨-distrib-∧ : ∨ DistributesOver ∧ ∧-distrib-∨ : ∧ DistributesOver ∨
instead of
∨-distribʳ-∧ : ∨ DistributesOverʳ ∧
and
IsBooleanAlgebra
now has fields:∨-complement : Inverse ⊤ ¬ ∨ ∧-complement : Inverse ⊥ ¬ ∧
instead of:
∨-complementʳ : RightInverse ⊤ ¬ ∨ ∧-complementʳ : RightInverse ⊥ ¬ ∧
-
To allow construction of these structures via their old form, smart constructors have been added to a new module
Algebra.Lattice.Structures.Biased
, which are by re-exported automatically byAlgebra.Lattice
. For example, if before you wrote:∧-∨-isDistributiveLattice = record { isLattice = ∧-∨-isLattice ; ∨-distribʳ-∧ = ∨-distribʳ-∧ }
you can use the smart constructor
isDistributiveLatticeʳʲᵐ
to write:∧-∨-isDistributiveLattice = isDistributiveLatticeʳʲᵐ (record { isLattice = ∧-∨-isLattice ; ∨-distribʳ-∧ = ∨-distribʳ-∧ })
without having to prove full distributivity.
-
Added new
IsBoundedSemilattice
/BoundedSemilattice
records. -
Added new aliases
Is(Meet/Join)(Bounded)Semilattice
forIs(Bounded)Semilattice
which can be used to indicate meet/join-ness of the original structures.
- The switch to the new function hierarchy is complete and the following definitions
now use the new definitions instead of the old ones:
Algebra.Lattice.Properties.BooleanAlgebra
Algebra.Properties.CommutativeMonoid.Sum
Algebra.Properties.Lattice
replace-equality
Data.Fin.Properties
∀-cons-⇔
⊎⇔∃
Data.Fin.Subset.Properties
out⊆-⇔
in⊆in-⇔
out⊂in-⇔
out⊂out-⇔
in⊂in-⇔
x∈⁅y⁆⇔x≡y
∩⇔×
∪⇔⊎
∃-Subset-[]-⇔
∃-Subset-∷-⇔
Data.List.Countdown
empty
Data.List.Fresh.Relation.Unary.Any
⊎⇔Any
Data.List.NonEmpty
Data.List.Relation.Binary.Lex
[]<[]-⇔
∷<∷-⇔
Data.List.Relation.Binary.Sublist.Heterogeneous.Properties
∷⁻¹
∷ʳ⁻¹
Sublist-[x]-bijection
Data.List.Relation.Binary.Sublist.Setoid.Properties
∷⁻¹
∷ʳ⁻¹
[x]⊆xs⤖x∈xs
Data.List.Relation.Unary.Grouped.Properties
Data.Maybe.Relation.Binary.Connected
just-equivalence
Data.Maybe.Relation.Binary.Pointwise
just-equivalence
Data.Maybe.Relation.Unary.All
just-equivalence
Data.Maybe.Relation.Unary.Any
just-equivalence
Data.Nat.Divisibility
m%n≡0⇔n∣m
Data.Nat.Properties
eq?
Data.Vec.N-ary
uncurry-∀ⁿ
uncurry-∃ⁿ
Data.Vec.Relation.Binary.Lex.Core
P⇔[]<[]
∷<∷-⇔
Data.Vec.Relation.Binary.Pointwise.Extensional
equivalent
Pointwise-≡↔≡
Data.Vec.Relation.Binary.Pointwise.Inductive
Pointwise-≡↔≡
Effect.Monad.Partiality
correct
Relation.Binary.Construct.Closure.Reflexive.Properties
⊎⇔Refl
Relation.Binary.Construct.Closure.Transitive
equivalent
Relation.Binary.Reflection
solve₁
Relation.Nullary.Decidable
map
-
The names of the fields in
Function.Bundles
have been changed fromf
,g
,cong₁
andcong₂
toto
,from
,to-cong
,from-cong
. -
The module
Function.Definitions
no longer has two equalities as module arguments, as they did not interact as intended with the re-exports fromFunction.Definitions.(Core1/Core2)
. The latter have been removed and their definitions folded intoFunction.Definitions
. -
In
Function.Definitions
the types ofSurjective
,Injective
andSurjective
have been changed from:Surjective f = ∀ y → ∃ λ x → f x ≈₂ y Inverseˡ f g = ∀ y → f (g y) ≈₂ y Inverseʳ f g = ∀ x → g (f x) ≈₁ x
to:
Surjective f = ∀ y → ∃ λ x → ∀ {z} → z ≈₁ x → f z ≈₂ y Inverseˡ f g = ∀ {x y} → y ≈₁ g x → f y ≈₂ x Inverseʳ f g = ∀ {x y} → y ≈₂ f x → g y ≈₁ x
This is for several reasons: i) the new definitions compose much more easily, ii) Agda can better infer the equalities used.
To ease backwards compatibility:
- the old definitions have been moved to the new names
StrictlySurjective
,StrictlyInverseˡ
andStrictlyInverseʳ
. - The records in
Function.Structures
andFunction.Bundles
export proofs of these under the namesstrictlySurjective
,strictlyInverseˡ
andstrictlyInverseʳ
, - Conversion functions have been added in both directions to
Function.Consequences(.Propositional)
.
- the old definitions have been moved to the new names
-
Many numeric operations in the library require their arguments to be non-zero, and various proofs require their arguments to be non-zero/positive/negative etc. As discussed on the mailing list, the previous way of constructing and passing round these proofs was extremely clunky and lead to messy and difficult to read code. We have therefore changed every occurrence where we need a proof of non-zeroness/positivity/etc. to take it as an irrelevant instance argument. See the mailing list for a fuller explanation of the motivation and implementation.
-
For example, whereas the type signature of division used to be:
_/_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
it is now:
_/_ : (dividend divisor : ℕ) .{{_ : NonZero divisor}} → ℕ
which means that as long as an instance of
NonZero n
is in scope then you can writem / n
without having to explicitly provide a proof, as instance search will fill it in for you. The full list of such operations changed is as follows:- In
Data.Nat.DivMod
:_/_
,_%_
,_div_
,_mod_
- In
Data.Nat.Pseudorandom.LCG
:Generator
- In
Data.Integer.DivMod
:_divℕ_
,_div_
,_modℕ_
,_mod_
- In
Data.Rational
:mkℚ+
,normalize
,_/_
,1/_
- In
Data.Rational.Unnormalised
:_/_
,1/_
,_÷_
- In
-
At the moment, there are 4 different ways such instance arguments can be provided, listed in order of convenience and clarity:
- Automatic basic instances - the standard library provides instances based on the constructors of each
numeric type in
Data.X.Base
. For example,Data.Nat.Base
constrains an instance ofNonZero (suc n)
for anyn
andData.Integer.Base
contains an instance ofNonNegative (+ n)
for anyn
. Consequently, if the argument is of the required form, these instances will always be filled in by instance search automatically, e.g.0/n≡0 : 0 / suc n ≡ 0
- Take the instance as an argument - You can provide the instance argument as a parameter to your function
and Agda's instance search will automatically use it in the correct place without you having to
explicitly pass it, e.g.
0/n≡0 : .{{_ : NonZero n}} → 0 / n ≡ 0
- Define the instance locally - You can define an instance argument in scope (e.g. in a
where
clause) and Agda's instance search will again find it automatically, e.g.instance n≢0 : NonZero n n≢0 = ... 0/n≡0 : 0 / n ≡ 0
- Pass the instance argument explicitly - Finally, if all else fails you can pass the
instance argument explicitly into the function using
{{ }}
, e.g.Suitable constructors for0/n≡0 : ∀ n (n≢0 : NonZero n) → ((0 / n) {{n≢0}}) ≡ 0
NonZero
/Positive
etc. can be found inData.X.Base
.
- Automatic basic instances - the standard library provides instances based on the constructors of each
numeric type in
-
A full list of proofs that have changed to use instance arguments is available at the end of this file. Notable changes to proofs are now discussed below.
-
Previously one of the hacks used in proofs was to explicitly refer to everything in the correct form, e.g. if the argument
n
had to be non-zero then you would refer to the argument assuc n
everywhere instead ofn
, e.g.n/n≡1 : ∀ n → suc n / suc n ≡ 1
This made the proofs extremely difficult to use if your term wasn't in the right form. After being updated to use instance arguments instead, the proof above becomes:
n/n≡1 : ∀ n {{_ : NonZero n}} → n / n ≡ 1
However, note that this means that if you passed in the value
x
to these proofs before, then you will now have to pass insuc x
. The proofs for which the arguments have changed form in this way are highlighted in the list at the bottom of the file. -
Finally, the definition of
_≢0
has been removed fromData.Rational.Unnormalised.Base
and the following proofs about it have been removed fromData.Rational.Unnormalised.Properties
:p≄0⇒∣↥p∣≢0 : ∀ p → p ≠ 0ℚᵘ → ℤ.∣ (↥ p) ∣ ≢0 ∣↥p∣≢0⇒p≄0 : ∀ p → ℤ.∣ (↥ p) ∣ ≢0 → p ≠ 0ℚᵘ
-
Currently arithmetic expressions involving rationals (both normalised and unnormalised) undergo disastrous exponential normalisation. For example,
p + q
would often be normalised by Agda to(↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
. While the normalised form ofp + q + r + s + t + u + v
would be ~700 lines long. This behaviour often chokes both type-checking and the display of the expressions in the IDE. -
To avoid this expansion and make non-trivial reasoning about rationals actually feasible:
- the records
ℚᵘ
andℚ
have both had theno-eta-equality
flag enabled - definition of arithmetic operations have trivial pattern matching added to
prevent them reducing, e.g.
has been changed to
p + q = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
p@record{} + q@record{} = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
- the records
-
As a consequence of this, some proofs that relied on this reduction behaviour or on eta-equality may no longer go through. There are several ways to fix this:
- The principled way is to not rely on this reduction behaviour in the first place.
The
Properties
files for rational numbers have been greatly expanded inv1.7
andv2.0
, and we believe most proofs should be able to be built up from existing proofs contained within these files. - Alternatively, annotating any rational arguments to a proof with either
@record{}
or@(mkℚ _ _ _)
should restore the old reduction behaviour for any terms involving those parameters. - Finally, if the above approaches are not viable then you may be forced to explicitly
use
cong
combined with a lemma that proves the old reduction behaviour.
- The principled way is to not rely on this reduction behaviour in the first place.
The
-
The definitions of the types for cancellativity in
Algebra.Definitions
previously made some of their arguments implicit. This was under the assumption that the operators were defined by pattern matching on the left argument so that Agda could always infer the argument on the RHS. -
Although many of the operators defined in the library follow this convention, this is not always true and cannot be assumed in user's code.
-
Therefore the definitions have been changed as follows to make all their arguments explicit:
-
LeftCancellative _•_
- From:
∀ x {y z} → (x • y) ≈ (x • z) → y ≈ z
- To:
∀ x y z → (x • y) ≈ (x • z) → y ≈ z
- From:
-
RightCancellative _•_
- From:
∀ {x} y z → (y • x) ≈ (z • x) → y ≈ z
- To:
∀ x y z → (y • x) ≈ (z • x) → y ≈ z
- From:
-
AlmostLeftCancellative e _•_
- From:
∀ {x} y z → ¬ x ≈ e → (x • y) ≈ (x • z) → y ≈ z
- To:
∀ x y z → ¬ x ≈ e → (x • y) ≈ (x • z) → y ≈ z
- From:
-
AlmostRightCancellative e _•_
- From:
∀ {x} y z → ¬ x ≈ e → (y • x) ≈ (z • x) → y ≈ z
- To:
∀ x y z → ¬ x ≈ e → (y • x) ≈ (z • x) → y ≈ z
- From:
-
-
Correspondingly some proofs of the above types will need additional arguments passed explicitly. Instances can easily be fixed by adding additional underscores, e.g.
∙-cancelˡ x
to∙-cancelˡ x _ _
∙-cancelʳ y z
to∙-cancelʳ _ y z
-
The definition of
Prime
inData.Nat.Primality
was:Prime 0 = ⊥ Prime 1 = ⊥ Prime (suc (suc n)) = (i : Fin n) → 2 + toℕ i ∤ 2 + n
which was very hard to reason about as not only did it involve conversion to and from the
Fin
type, it also required that the divisor was of the form2 + toℕ i
, which has exactly the same problem as thesuc n
hack described above used for non-zeroness. -
To make it easier to use, reason about and read, the definition has been changed to:
Prime 0 = ⊥ Prime 1 = ⊥ Prime n = ∀ {d} → 2 ≤ d → d < n → d ∤ n
-
Under the
Reflection
module, there were various impending name clashes between the core AST as exposed by Agda and the annotated AST defined in the library. -
While the content of the modules remain the same, the modules themselves have therefore been renamed as follows:
Reflection.Annotated ↦ Reflection.AnnotatedAST Reflection.Annotated.Free ↦ Reflection.AnnotatedAST.Free Reflection.Abstraction ↦ Reflection.AST.Abstraction Reflection.Argument ↦ Reflection.AST.Argument Reflection.Argument.Information ↦ Reflection.AST.Argument.Information Reflection.Argument.Quantity ↦ Reflection.AST.Argument.Quantity Reflection.Argument.Relevance ↦ Reflection.AST.Argument.Relevance Reflection.Argument.Modality ↦ Reflection.AST.Argument.Modality Reflection.Argument.Visibility ↦ Reflection.AST.Argument.Visibility Reflection.DeBruijn ↦ Reflection.AST.DeBruijn Reflection.Definition ↦ Reflection.AST.Definition Reflection.Instances ↦ Reflection.AST.Instances Reflection.Literal ↦ Reflection.AST.Literal Reflection.Meta ↦ Reflection.AST.Meta Reflection.Name ↦ Reflection.AST.Name Reflection.Pattern ↦ Reflection.AST.Pattern Reflection.Show ↦ Reflection.AST.Show Reflection.Traversal ↦ Reflection.AST.Traversal Reflection.Universe ↦ Reflection.AST.Universe Reflection.TypeChecking.Monad ↦ Reflection.TCM Reflection.TypeChecking.Monad.Categorical ↦ Reflection.TCM.Categorical Reflection.TypeChecking.Monad.Format ↦ Reflection.TCM.Format Reflection.TypeChecking.Monad.Syntax ↦ Reflection.TCM.Instances Reflection.TypeChecking.Monad.Instances ↦ Reflection.TCM.Syntax
-
A new module
Reflection.AST
that re-exports the contents of the submodules has been added.
- The previous implementations of
_divℕ_
,_div_
,_modℕ_
,_mod_
inData.Integer.DivMod
internally converted to the unaryFin
datatype resulting in poor performance. The implementation has been updated to use the corresponding operations fromData.Nat.DivMod
which are efficiently implemented using the Haskell backend.
-
The module
Strict
has been deprecated in favour ofFunction.Strict
and the definitions of strict application,_$!_
and_$!′_
, have been moved fromFunction.Base
toFunction.Strict
. -
The contents of
Function.Strict
is now re-exported byFunction
.
- Several ring-like structures now have the multiplicative structure defined by
its laws rather than as a substructure, to avoid repeated proofs that the
underlying relation is an equivalence. These are:
IsNearSemiring
IsSemiringWithoutOne
IsSemiringWithoutAnnihilatingZero
IsRing
- To aid with migration, structures matching the old style ones have been added
to
Algebra.Structures.Biased
, with conversion functions:IsNearSemiring*
andisNearSemiring*
IsSemiringWithoutOne*
andisSemiringWithoutOne*
IsSemiringWithoutAnnihilatingZero*
andisSemiringWithoutAnnihilatingZero*
IsRing*
andisRing*
-
The definition of ⊥ has been changed to
private data Empty : Set where ⊥ : Set ⊥ = Irrelevant Empty
in order to make ⊥ proof irrelevant. Any two proofs of
⊥
or of a negated statements are now judgmentally equal to each other. -
Consequently we have modified the following definitions:
- In
Relation.Nullary.Decidable.Core
, the type ofdec-no
has changeddec-no : (p? : Dec P) → ¬ P → ∃ λ ¬p′ → p? ≡ no ¬p′ ↦ dec-no : (p? : Dec P) (¬p : ¬ P) → p? ≡ no ¬p
- In
Relation.Binary.PropositionalEquality
, the type of≢-≟-identity
has changed≢-≟-identity : x ≢ y → ∃ λ ¬eq → x ≟ y ≡ no ¬eq ↦ ≢-≟-identity : (x≢y : x ≢ y) → x ≟ y ≡ no x≢y
- In
-
It was very difficult to use the
Relation.Nullary
modules, asRelation.Nullary
contained the basic definitions of negation, decidability etc., and the operations and proofs were smeared overRelation.Nullary.(Negation/Product/Sum/Implication etc.)
. -
In order to fix this:
- the definition of
Dec
andrecompute
have been moved toRelation.Nullary.Decidable.Core
- the definition of
Reflects
has been moved toRelation.Nullary.Reflects
- the definition of
¬_
has been moved toRelation.Nullary.Negation.Core
- the definition of
-
Backwards compatibility has been maintained, as
Relation.Nullary
still re-exports these publicly. -
The modules:
Relation.Nullary.Product Relation.Nullary.Sum Relation.Nullary.Implication
have been deprecated and their contents moved to
Relation.Nullary.(Negation/Reflects/Decidable)
however all their contents is re-exported byRelation.Nullary
which is the easiest way to access it now. -
In order to facilitate this reorganisation the following breaking moves have occurred:
¬?
has been moved fromRelation.Nullary.Negation.Core
toRelation.Nullary.Decidable.Core
¬-reflects
has been moved fromRelation.Nullary.Negation.Core
toRelation.Nullary.Reflects
.decidable-stable
,excluded-middle
and¬-drop-Dec
have been moved fromRelation.Nullary.Negation
toRelation.Nullary.Decidable
.fromDec
andtoDec
have been moved fromData.Sum.Base
toData.Sum
.
-
The unindexed versions are not defined in terms of the named versions anymore
-
The
RawApplicative
andRawMonad
type classes have been relaxed so that the underlying functors do not need their domain and codomain to live at the same Set level. This is needed for level-increasing functors likeIO : Set l → Set (suc l)
. -
RawApplicative
is nowRawFunctor + pure + _<*>_
andRawMonad
is nowRawApplicative
+_>>=_
and soreturn
is not used anywhere anymore. This fixes the conflict withcase_return_of
(#356) This reorganisation means in particular that the functor/applicative of a monad are not computed using_>>=_
. This may break proofs. -
When
F : Set f → Set f
we moreover have a definable join/μ operatorjoin : (M : RawMonad F) → F (F A) → F A
. -
We now have
RawEmpty
andRawChoice
respectively packingempty : M A
and(<|>) : M A → M A → M A
.RawApplicativeZero
,RawAlternative
,RawMonadZero
,RawMonadPlus
are all defined in terms of these. -
MonadT T
now returns aMonadTd
record that packs both a proof that theMonad M
transformed byT
is a monad and that we canlift
a computationM A
to a transformed computationT M A
. -
The monad transformer are not mere aliases anymore, they are record-wrapped which allows constraints such as
MonadIO (StateT S (ReaderT R IO))
to be discharged by instance arguments. -
The mtl-style type classes (
MonadState
,MonadReader
) do not contain a proof that the underlying functor is aMonad
anymore. This ensures we do not have conflictingMonad M
instances from a pair ofMonadState S M
&MonadReader R M
constraints. -
MonadState S M
is now defined in terms ofgets : (S → A) → M A modify : (S → S) → M ⊤
with
get
andput
defined as derived notions. This is needed becauseMonadState S M
does not pack aMonad M
instance anymore and so we cannot definemodify f
asget >>= λ s → put (f s)
. -
MonadWriter 𝕎 M
is defined similarly:writer : W × A → M A listen : M A → M (W × A) pass : M ((W → W) × A) → M A
with
tell
defined as a derived notion. Note that𝕎
is aRawMonoid
, not aSet
andW
is the carrier of the monoid. -
New modules:
Algebra.Construct.Initial Algebra.Construct.Terminal Data.List.Effectful.Transformer Data.List.NonEmpty.Effectful.Transformer Data.Maybe.Effectful.Transformer Data.Sum.Effectful.Left.Transformer Data.Sum.Effectful.Right.Transformer Data.Vec.Effectful.Transformer Effect.Empty Effect.Choice Effect.Monad.Error.Transformer Effect.Monad.Identity Effect.Monad.IO Effect.Monad.IO.Instances Effect.Monad.Reader.Indexed Effect.Monad.Reader.Instances Effect.Monad.Reader.Transformer Effect.Monad.Reader.Transformer.Base Effect.Monad.State.Indexed Effect.Monad.State.Instances Effect.Monad.State.Transformer Effect.Monad.State.Transformer.Base Effect.Monad.Writer Effect.Monad.Writer.Indexed Effect.Monad.Writer.Instances Effect.Monad.Writer.Transformer Effect.Monad.Writer.Transformer.Base IO.Effectful IO.Instances
-
In accordance with changes to the flags in Agda 2.6.3, all modules that previously used the
--without-K
flag now use the--cubical-compatible
flag instead. -
To avoid large indices that are by default no longer allowed in Agda 2.6.4, universe levels have been increased in the following definitions:
Data.Star.Decoration.DecoratedWith
Data.Star.Pointer.Pointer
Reflection.AnnotatedAST.Typeₐ
Reflection.AnnotatedAST.AnnotationFun
-
The first two arguments of
m≡n⇒m-n≡0
(nowi≡j⇒i-j≡0
) inData.Integer.Base
have been made implicit. -
The relations
_≤_
_≥_
_<_
_>_
inData.Fin.Base
have been generalised so they can now relateFin
terms with different indices. Should be mostly backwards compatible, but very occasionally when proving properties about the orderings themselves the second index must be provided explicitly. -
The argument
xs
inxs≮[]
inData.{List|Vec}.Relation.Binary.Lex.Strict
introduced in PRs #1648 and #1672 has now been made implicit. -
Issue #2075 (Johannes Waldmann): wellfoundedness of the lexicographic ordering on products, defined in
Data.Product.Relation.Binary.Lex.Strict
, no longer requires the assumption of symmetry for the first equality relation_≈₁_
, leading to a new lemmaInduction.WellFounded.Acc-resp-flip-≈
, and refactoring of the previous proofInduction.WellFounded.Acc-resp-≈
. -
The operation
SymClosure
on relations inRelation.Binary.Construct.Closure.Symmetric
has been reimplemented as a data typeSymClosure _⟶_ a b
that is parameterized by the input relation_⟶_
(as well as the elementsa
andb
of the domain) so that_⟶_
can be inferred, which it could not from the previous implementation using the sum typea ⟶ b ⊎ b ⟶ a
. -
In
Algebra.Morphism.Structures
,IsNearSemiringHomomorphism
,IsSemiringHomomorphism
, andIsRingHomomorphism
have been redesigned to build up fromIsMonoidHomomorphism
,IsNearSemiringHomomorphism
, andIsSemiringHomomorphism
respectively, adding a single property at each step. This means that they no longer need to have two separate proofs ofIsRelHomomorphism
. Similarly,IsLatticeHomomorphism
is now built asIsRelHomomorphism
along with proofs that_∧_
and_∨_
are homomorphic.Also,
⁻¹-homo
inIsRingHomomorphism
has been renamed to-‿homo
. -
Moved definition of
_>>=_
underData.Vec.Base
to its submoduleCartesianBind
in order to keep another new definition of_>>=_
, located inDiagonalBind
which is also a submodule ofData.Vec.Base
. -
The functions
split
,flatten
andflatten-split
have been removed fromData.List.NonEmpty
. In their placegroupSeqs
andungroupSeqs
have been added toData.List.NonEmpty.Base
which morally perform the same operations but without computing the accompanying proofs. The proofs can be found inData.List.NonEmpty.Properties
under the namesgroupSeqs-groups
andungroupSeqs
andgroupSeqs
. -
The constructors
+0
and+[1+_]
fromData.Integer.Base
are no longer exported byData.Rational.Base
. You will have to openData.Integer(.Base)
directly to use them. -
The names of the (in)equational reasoning combinators defined in the internal modules
Data.Rational(.Unnormalised).Properties.≤-Reasoning
have been renamed (issue #1437) to conform with the defined setoid equality_≃_
onRational
s:step-≈ ↦ step-≃ step-≃˘ ↦ step-≃˘
with corresponding associated syntax:
_≈⟨_⟩_ ↦ _≃⟨_⟩_ _≈˘⟨_⟩_ ↦ _≃˘⟨_⟩_
NB. It is not possible to rename or deprecate
syntax
declarations, so Agda will only issue a "Could not parse the applicationbegin ...
when scope checking" warning if the old combinators are used. -
The types of the proofs
pos⇒1/pos
/1/pos⇒pos
andneg⇒1/neg
/1/neg⇒neg
inData.Rational(.Unnormalised).Properties
have been switched, as the previous naming scheme didn't correctly generalise to e.g.pos+pos⇒pos
. For example the types ofpos⇒1/pos
/1/pos⇒pos
were:pos⇒1/pos : ∀ p .{{_ : NonZero p}} .{{Positive (1/ p)}} → Positive p 1/pos⇒pos : ∀ p .{{_ : Positive p}} → Positive (1/ p)
but are now:
pos⇒1/pos : ∀ p .{{_ : Positive p}} → Positive (1/ p) 1/pos⇒pos : ∀ p .{{_ : NonZero p}} .{{Positive (1/ p)}} → Positive p
-
Opₗ
andOpᵣ
have moved fromAlgebra.Core
toAlgebra.Module.Core
. -
In
Data.Nat.GeneralisedArithmetic
, thes
andz
arguments to the following functions have been made explicit:fold-+
fold-k
fold-*
fold-pull
-
In
Data.Fin.Properties
:- the
i
argument toopposite-suc
has been made explicit; pigeonhole
has been strengthened: wlog, we return a proof thati < j
rather than a merei ≢ j
.
- the
-
In
Data.Sum.Base
the definitionsfromDec
andtoDec
have been moved toData.Sum
. -
In
Data.Vec.Base
: the definitionsinit
andlast
have been changed from theinitLast
view-derived implementation to direct recursive definitions. -
In
Codata.Guarded.Stream
the following functions have been modified to have simpler definitions:cycle
interleave⁺
cantor
Furthermore, the direction of interleaving ofcantor
has changed. Precisely, supposepair
is the cantor pairing function, thenlookup (pair i j) (cantor xss)
according to the old definition corresponds tolookup (pair j i) (cantor xss)
according to the new definition. For a concrete example see the one included at the end of the module.
-
Removed
m/n/o≡m/[n*o]
fromData.Nat.Divisibility
and added a more generalm/n/o≡m/[n*o]
toData.Nat.DivMod
that doesn't requiren * o ∣ m
. -
Updated
lookup
functions (and variants) to match the conventions adopted in theList
module i.e.lookup
takes its container first and the index (whose type may depend on the container value) second. This affects modules:Codata.Guarded.Stream Codata.Guarded.Stream.Relation.Binary.Pointwise Codata.Musical.Colist.Base Codata.Musical.Colist.Relation.Unary.Any.Properties Codata.Musical.Covec Codata.Musical.Stream Codata.Sized.Colist Codata.Sized.Covec Codata.Sized.Stream Data.Vec.Relation.Unary.All Data.Star.Environment Data.Star.Pointer Data.Star.Vec Data.Trie Data.Trie.NonEmpty Data.Tree.AVL Data.Tree.AVL.Indexed Data.Tree.AVL.Map Data.Tree.AVL.NonEmpty Data.Vec.Recursive Tactic.RingSolver Tactic.RingSolver.Core.NatSet
- Moved & renamed from
Data.Vec.Relation.Unary.All
toData.Vec.Relation.Unary.All.Properties
:lookup ↦ lookup⁺ tabulate ↦ lookup⁻
- Renamed in
Data.Vec.Relation.Unary.Linked.Properties
andCodata.Guarded.Stream.Relation.Binary.Pointwise
:lookup ↦ lookup⁺
- Added the following new definitions to
Data.Vec.Relation.Unary.All
:lookupAny : All P xs → (i : Any Q xs) → (P ∩ Q) (Any.lookup i) lookupWith : ∀[ P ⇒ Q ⇒ R ] → All P xs → (i : Any Q xs) → R (Any.lookup i) lookup : All P xs → (∀ {x} → x ∈ₚ xs → P x) lookupₛ : P Respects _≈_ → All P xs → (∀ {x} → x ∈ xs → P x)
excluded-middle
inRelation.Nullary.Decidable.Core
has been renamed to¬¬-excluded-middle
.
- Moved & renamed from
- The ring solver tactic has been greatly improved. In particular:
- When the solver is used for concrete ring types, e.g. ℤ, the equality can now use
all the ring operations defined natively for that type, rather than having
to use the operations defined in
AlmostCommutativeRing
. For example previously you could not useData.Integer.Base._*_
but instead had to useAlmostCommutativeRing._*_
. - The solver now supports use of the subtraction operator
_-_
whenever it is defined immediately in terms of_+_
and-_
. This is the case forData.Integer
andData.Rational
.
- When the solver is used for concrete ring types, e.g. ℤ, the equality can now use
all the ring operations defined natively for that type, rather than having
to use the operations defined in
-
Previously the division and modulus operators were defined in
Data.Nat.DivMod
which in turn meant that using them required importingData.Nat.Properties
which is a very heavy dependency. -
To fix this, these operators have been moved to
Data.Nat.Base
. The properties for them still live inData.Nat.DivMod
(which also publicly re-exports them to provide backwards compatibility). -
Beneficiaries of this change include
Data.Rational.Unnormalised.Base
whose dependencies are now significantly smaller.
- As mentioned by MatthewDaggitt in Issue #1755, Raw bundles defined in Data.X.Properties
should be defined in Data.X.Base as they don't require any properties.
- Moved raw bundles From
Data.Nat.Properties
toData.Nat.Base
- Moved raw bundles From
Data.Nat.Binary.Properties
toData.Nat.Binary.Base
- Moved raw bundles From
Data.Rational.Properties
toData.Rational.Base
- Moved raw bundles From
Data.Rational.Unnormalised.Properties
toData.Rational.Unnormalised.Base
- Moved raw bundles From
- A new module
Algebra.Bundles.Raw
containing the definitions of the raw bundles can be imported at much lower cost fromData.X.Base
. The following definitions have been moved:RawMagma
RawMonoid
RawGroup
RawNearSemiring
RawSemiring
RawRingWithoutOne
RawRing
RawQuasigroup
RawLoop
- A new module
Algebra.Lattice.Bundles.Raw
is also introduced.RawLattice
has been moved fromAlgebra.Lattice.Bundles
to this new module.
- The following files have been moved:
Relation.Binary.Construct.Converse ↦ Relation.Binary.Construct.Flip.EqAndOrd Relation.Binary.Construct.Flip ↦ Relation.Binary.Construct.Flip.Ord
- The module
Function.Related
has been deprecated in favour ofFunction.Related.Propositional
whose code uses the new function hierarchy. This also opens up the possibility of a more generalFunction.Related.Setoid
at a later date. Several of the names have been changed in this process to bring them into line with the camelcase naming convention used in the rest of the library:reverse-implication ↦ reverseImplication reverse-injection ↦ reverseInjection left-inverse ↦ leftInverse Symmetric-kind ↦ SymmetricKind Forward-kind ↦ ForwardKind Backward-kind ↦ BackwardKind Equivalence-kind ↦ EquivalenceKind
- As discussed above the following files have been moved:
Algebra.Properties.Semilattice ↦ Algebra.Lattice.Properties.Semilattice Algebra.Properties.Lattice ↦ Algebra.Lattice.Properties.Lattice Algebra.Properties.DistributiveLattice ↦ Algebra.Lattice.Properties.DistributiveLattice Algebra.Properties.BooleanAlgebra ↦ Algebra.Lattice.Properties.BooleanAlgebra Algebra.Properties.BooleanAlgebra.Expression ↦ Algebra.Lattice.Properties.BooleanAlgebra.Expression Algebra.Morphism.LatticeMonomorphism ↦ Algebra.Lattice.Morphism.LatticeMonomorphism
- As discussed above the following files have been moved:
Codata.Sized.Colist.Categorical ↦ Codata.Sized.Colist.Effectful Codata.Sized.Covec.Categorical ↦ Codata.Sized.Covec.Effectful Codata.Sized.Delay.Categorical ↦ Codata.Sized.Delay.Effectful Codata.Sized.Stream.Categorical ↦ Codata.Sized.Stream.Effectful Data.List.Categorical ↦ Data.List.Effectful Data.List.Categorical.Transformer ↦ Data.List.Effectful.Transformer Data.List.NonEmpty.Categorical ↦ Data.List.NonEmpty.Effectful Data.List.NonEmpty.Categorical.Transformer ↦ Data.List.NonEmpty.Effectful.Transformer Data.Maybe.Categorical ↦ Data.Maybe.Effectful Data.Maybe.Categorical.Transformer ↦ Data.Maybe.Effectful.Transformer Data.Product.Categorical.Examples ↦ Data.Product.Effectful.Examples Data.Product.Categorical.Left ↦ Data.Product.Effectful.Left Data.Product.Categorical.Left.Base ↦ Data.Product.Effectful.Left.Base Data.Product.Categorical.Right ↦ Data.Product.Effectful.Right Data.Product.Categorical.Right.Base ↦ Data.Product.Effectful.Right.Base Data.Sum.Categorical.Examples ↦ Data.Sum.Effectful.Examples Data.Sum.Categorical.Left ↦ Data.Sum.Effectful.Left Data.Sum.Categorical.Left.Transformer ↦ Data.Sum.Effectful.Left.Transformer Data.Sum.Categorical.Right ↦ Data.Sum.Effectful.Right Data.Sum.Categorical.Right.Transformer ↦ Data.Sum.Effectful.Right.Transformer Data.These.Categorical.Examples ↦ Data.These.Effectful.Examples Data.These.Categorical.Left ↦ Data.These.Effectful.Left Data.These.Categorical.Left.Base ↦ Data.These.Effectful.Left.Base Data.These.Categorical.Right ↦ Data.These.Effectful.Right Data.These.Categorical.Right.Base ↦ Data.These.Effectful.Right.Base Data.Vec.Categorical ↦ Data.Vec.Effectful Data.Vec.Categorical.Transformer ↦ Data.Vec.Effectful.Transformer Data.Vec.Recursive.Categorical ↦ Data.Vec.Recursive.Effectful Function.Identity.Categorical ↦ Function.Identity.Effectful IO.Categorical ↦ IO.Effectful Reflection.TCM.Categorical ↦ Reflection.TCM.Effectful
- The following files have been moved:
Relation.Binary.Properties.BoundedJoinSemilattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedJoinSemilattice.agda Relation.Binary.Properties.BoundedLattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedLattice.agda Relation.Binary.Properties.BoundedMeetSemilattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedMeetSemilattice.agda Relation.Binary.Properties.DistributiveLattice.agda ↦ Relation.Binary.Lattice.Properties.DistributiveLattice.agda Relation.Binary.Properties.JoinSemilattice.agda ↦ Relation.Binary.Lattice.Properties.JoinSemilattice.agda Relation.Binary.Properties.Lattice.agda ↦ Relation.Binary.Lattice.Properties.Lattice.agda Relation.Binary.Properties.MeetSemilattice.agda ↦ Relation.Binary.Lattice.Properties.MeetSemilattice.agda
- The module
Data.Nat.Properties.Core
has been deprecated, and its one entry moved toData.Nat.Properties
-
In
Algebra.Construct.Zero
:rawMagma ↦ Algebra.Construct.Terminal.rawMagma magma ↦ Algebra.Construct.Terminal.magma semigroup ↦ Algebra.Construct.Terminal.semigroup band ↦ Algebra.Construct.Terminal.band
-
In
Codata.Guarded.Stream.Properties
:map-identity ↦ map-id map-fusion ↦ map-∘ drop-fusion ↦ drop-drop
-
In
Codata.Sized.Colist.Properties
:map-identity ↦ map-id map-map-fusion ↦ map-∘ drop-drop-fusion ↦ drop-drop
-
In
Codata.Sized.Covec.Properties
:map-identity ↦ map-id map-map-fusion ↦ map-∘
-
In
Codata.Sized.Delay.Properties
:map-identity ↦ map-id map-map-fusion ↦ map-∘ map-unfold-fusion ↦ map-unfold
-
In
Codata.Sized.M.Properties
:map-compose ↦ map-∘
-
In
Codata.Sized.Stream.Properties
:map-identity ↦ map-id map-map-fusion ↦ map-∘
-
In
Data.Bool.Properties
(Issue #2046):push-function-into-if ↦ if-float
-
In
Data.Fin.Base
: two new, hopefully more memorable, names↑ˡ
↑ʳ
for the 'left', resp. 'right' injection of a Fin m into a 'larger' type,Fin (m + n)
, resp.Fin (n + m)
, with argument order to reflect the position of theFin m
argument.inject+ ↦ flip _↑ˡ_ raise ↦ _↑ʳ_
Issue #1726: the relation
_≺_
and its single constructor_≻toℕ_
have been deprecated in favour of their extensional equivalent_<_
but omitting the inversion principle which pattern matching on_≻toℕ_
would achieve; this instead is proxied by the propertyData.Fin.Properties.toℕ<
. -
In
Data.Fin.Induction
:≺-Rec ≺-wellFounded ≺-recBuilder ≺-rec
As with Issue #1726 above: the deprecation of relation
_≺_
means that these definitions associated with wf-recursion are deprecated in favour of their_<_
counterparts. But it's not quite sensible to say that these definitions should be renamed to anything, least of all those counterparts... the type confusion would be intolerable. -
In
Data.Fin.Properties
:toℕ-raise ↦ toℕ-↑ʳ toℕ-inject+ ↦ toℕ-↑ˡ splitAt-inject+ ↦ splitAt-↑ˡ m i n splitAt-raise ↦ splitAt-↑ʳ Fin0↔⊥ ↦ 0↔⊥ eq? ↦ inj⇒≟
Likewise under issue #1726: the properties
≺⇒<′
and<′⇒≺
have been deprecated in favour of their proxy counterparts<⇒<′
and<′⇒<
. -
In
Data.Fin.Permutation.Components
:reverse ↦ Data.Fin.Base.opposite reverse-prop ↦ Data.Fin.Properties.opposite-prop reverse-involutive ↦ Data.Fin.Properties.opposite-involutive reverse-suc ↦ Data.Fin.Properties.opposite-suc
-
In
Data.Integer.DivMod
the operator names have been renamed to be consistent with those inData.Nat.DivMod
:_divℕ_ ↦ _/ℕ_ _div_ ↦ _/_ _modℕ_ ↦ _%ℕ_ _mod_ ↦ _%_
-
In
Data.Integer.Properties
references to variables in names have been made consistent so thatm
,n
always refer to naturals andi
andj
always refer to integers:≤-steps ↦ i≤j⇒i≤k+j ≤-step ↦ i≤j⇒i≤1+j ≤-steps-neg ↦ i≤j⇒i-k≤j ≤-step-neg ↦ i≤j⇒pred[i]≤j n≮n ↦ i≮i ∣n∣≡0⇒n≡0 ↦ ∣i∣≡0⇒i≡0 ∣-n∣≡∣n∣ ↦ ∣-i∣≡∣i∣ 0≤n⇒+∣n∣≡n ↦ 0≤i⇒+∣i∣≡i +∣n∣≡n⇒0≤n ↦ +∣i∣≡i⇒0≤i +∣n∣≡n⊎+∣n∣≡-n ↦ +∣i∣≡i⊎+∣i∣≡-i ∣m+n∣≤∣m∣+∣n∣ ↦ ∣i+j∣≤∣i∣+∣j∣ ∣m-n∣≤∣m∣+∣n∣ ↦ ∣i-j∣≤∣i∣+∣j∣ signₙ◃∣n∣≡n ↦ signᵢ◃∣i∣≡i ◃-≡ ↦ ◃-cong ∣m-n∣≡∣n-m∣ ↦ ∣i-j∣≡∣j-i∣ m≡n⇒m-n≡0 ↦ i≡j⇒i-j≡0 m-n≡0⇒m≡n ↦ i-j≡0⇒i≡j m≤n⇒m-n≤0 ↦ i≤j⇒i-j≤0 m-n≤0⇒m≤n ↦ i-j≤0⇒i≤j m≤n⇒0≤n-m ↦ i≤j⇒0≤j-i 0≤n-m⇒m≤n ↦ 0≤i-j⇒j≤i n≤1+n ↦ i≤suc[i] n≢1+n ↦ i≢suc[i] m≤pred[n]⇒m<n ↦ i≤pred[j]⇒i<j m<n⇒m≤pred[n] ↦ i<j⇒i≤pred[j] -1*n≡-n ↦ -1*i≡-i m*n≡0⇒m≡0∨n≡0 ↦ i*j≡0⇒i≡0∨j≡0 ∣m*n∣≡∣m∣*∣n∣ ↦ ∣i*j∣≡∣i∣*∣j∣ m≤m+n ↦ i≤i+j n≤m+n ↦ i≤j+i m-n≤m ↦ i≤i-j +-pos-monoʳ-≤ ↦ +-monoʳ-≤ +-neg-monoʳ-≤ ↦ +-monoʳ-≤ *-monoʳ-≤-pos ↦ *-monoʳ-≤-nonNeg *-monoˡ-≤-pos ↦ *-monoˡ-≤-nonNeg *-monoʳ-≤-neg ↦ *-monoʳ-≤-nonPos *-monoˡ-≤-neg ↦ *-monoˡ-≤-nonPos *-cancelˡ-<-neg ↦ *-cancelˡ-<-nonPos *-cancelʳ-<-neg ↦ *-cancelʳ-<-nonPos ^-semigroup-morphism ↦ ^-isMagmaHomomorphism ^-monoid-morphism ↦ ^-isMonoidHomomorphism pos-distrib-* ↦ pos-* pos-+-commute ↦ pos-+ abs-*-commute ↦ abs-* +-isAbelianGroup ↦ +-0-isAbelianGroup
-
In
Data.List.Properties
:map-id₂ ↦ map-id-local map-cong₂ ↦ map-cong-local map-compose ↦ map-∘ map-++-commute ↦ map-++ sum-++-commute ↦ sum-++ reverse-map-commute ↦ reverse-map reverse-++-commute ↦ reverse-++ zipWith-identityˡ ↦ zipWith-zeroˡ zipWith-identityʳ ↦ zipWith-zeroʳ ʳ++-++ ↦ ++-ʳ++ take++drop ↦ take++drop≡id
-
In
Data.List.NonEmpty.Properties
:map-compose ↦ map-∘ map-++⁺-commute ↦ map-++⁺
-
In
Data.List.Relation.Unary.All.Properties
:updateAt-id-relative ↦ updateAt-id-local updateAt-compose-relative ↦ updateAt-∘-local updateAt-compose ↦ updateAt-∘ updateAt-cong-relative ↦ updateAt-cong-local
-
In
Data.List.Zipper.Properties
:toList-reverse-commute ↦ toList-reverse toList-ˡ++-commute ↦ toList-ˡ++ toList-++ʳ-commute ↦ toList-++ʳ toList-map-commute ↦ toList-map toList-foldr-commute ↦ toList-foldr
-
In
Data.Maybe.Properties
:map-id₂ ↦ map-id-local map-cong₂ ↦ map-cong-local map-compose ↦ map-∘ map-<∣>-commute ↦ map-<∣>
-
In
Data.List.Relation.Binary.Subset.Propositional.Properties
:map-with-∈⁺ ↦ mapWith∈⁺
-
In
Data.List.Relation.Unary.Any.Properties
:map-with-∈⁺ ↦ mapWith∈⁺ map-with-∈⁻ ↦ mapWith∈⁻ map-with-∈↔ ↦ mapWith∈↔
-
In
Data.Nat.Properties
:suc[pred[n]]≡n ↦ suc-pred ≤-step ↦ m≤n⇒m≤1+n ≤-stepsˡ ↦ m≤n⇒m≤o+n ≤-stepsʳ ↦ m≤n⇒m≤n+o <-step ↦ m<n⇒m<1+n
-
In
Data.Rational.Unnormalised.Properties
:↥[p/q]≡p ↦ ↥[n/d]≡n ↧[p/q]≡q ↦ ↧[n/d]≡d *-monoˡ-≤-pos ↦ *-monoˡ-≤-nonNeg *-monoʳ-≤-pos ↦ *-monoʳ-≤-nonNeg ≤-steps ↦ p≤q⇒p≤r+q *-monoˡ-≤-neg ↦ *-monoˡ-≤-nonPos *-monoʳ-≤-neg ↦ *-monoʳ-≤-nonPos *-cancelˡ-<-pos ↦ *-cancelˡ-<-nonNeg *-cancelʳ-<-pos ↦ *-cancelʳ-<-nonNeg positive⇒nonNegative ↦ pos⇒nonNeg negative⇒nonPositive ↦ neg⇒nonPos negative<positive ↦ neg<pos
-
In
Data.Rational.Base
:+-rawMonoid ↦ +-0-rawMonoid *-rawMonoid ↦ *-1-rawMonoid
-
In
Data.Rational.Properties
:*-monoʳ-≤-neg ↦ *-monoʳ-≤-nonPos *-monoˡ-≤-neg ↦ *-monoˡ-≤-nonPos *-monoʳ-≤-pos ↦ *-monoʳ-≤-nonNeg *-monoˡ-≤-pos ↦ *-monoˡ-≤-nonNeg *-cancelˡ-<-pos ↦ *-cancelˡ-<-nonNeg *-cancelʳ-<-pos ↦ *-cancelʳ-<-nonNeg *-cancelˡ-<-neg ↦ *-cancelˡ-<-nonPos *-cancelʳ-<-neg ↦ *-cancelʳ-<-nonPos negative<positive ↦ neg<pos
-
In
Data.Rational.Unnormalised.Base
:+-rawMonoid ↦ +-0-rawMonoid *-rawMonoid ↦ *-1-rawMonoid
-
In
Data.Sum.Properties
:[,]-∘-distr ↦ [,]-∘ [,]-map-commute ↦ [,]-map map-commute ↦ map-map map₁₂-commute ↦ map₁₂-map₂₁
-
In
Data.Tree.AVL
:_∈?_ ↦ member
-
In
Data.Tree.AVL.IndexedMap
:_∈?_ ↦ member
-
In
Data.Tree.AVL.Map
:_∈?_ ↦ member
-
In
Data.Tree.AVL.Sets
:_∈?_ ↦ member
-
In
Data.Tree.Binary.Zipper.Properties
:toTree-#nodes-commute ↦ toTree-#nodes toTree-#leaves-commute ↦ toTree-#leaves toTree-map-commute ↦ toTree-map toTree-foldr-commute ↦ toTree-foldr toTree-⟪⟫ˡ-commute ↦ toTree--⟪⟫ˡ toTree-⟪⟫ʳ-commute ↦ toTree-⟪⟫ʳ
-
In
Data.Tree.Rose.Properties
:map-compose ↦ map-∘
-
In
Data.Vec.Properties
:take-distr-zipWith ↦ take-zipWith take-distr-map ↦ take-map drop-distr-zipWith ↦ drop-zipWith drop-distr-map ↦ drop-map updateAt-id-relative ↦ updateAt-id-local updateAt-compose-relative ↦ updateAt-∘-local updateAt-compose ↦ updateAt-∘ updateAt-cong-relative ↦ updateAt-cong-local []%=-compose ↦ []%=-∘ []≔-++-inject+ ↦ []≔-++-↑ˡ []≔-++-raise ↦ []≔-++-↑ʳ idIsFold ↦ id-is-foldr sum-++-commute ↦ sum-++ take-drop-id ↦ take++drop≡id
and the type of the proof
zipWith-comm
has been generalised from:zipWith-comm : ∀ {f : A → A → B} (comm : ∀ x y → f x y ≡ f y x) (xs ys : Vec A n) → zipWith f xs ys ≡ zipWith f ys xs
to
zipWith-comm : ∀ {f : A → B → C} {g : B → A → C} (comm : ∀ x y → f x y ≡ g y x) (xs : Vec A n) ys → zipWith f xs ys ≡ zipWith g ys xs
-
In
Data.Vec.Functional.Properties
:updateAt-id-relative ↦ updateAt-id-local updateAt-compose-relative ↦ updateAt-∘-local updateAt-compose ↦ updateAt-∘ updateAt-cong-relative ↦ updateAt-cong-local map-updateAt ↦ map-updateAt-local
NB. This last one is complicated by the addition of a 'global' property
map-updateAt
-
In
Data.Vec.Recursive.Properties
:append-cons-commute ↦ append-cons
-
In
Data.Vec.Relation.Binary.Equality.Setoid
:map-++-commute ↦ map-++
-
In
Function.Construct.Composition
:_∘-⟶_ ↦ _⟶-∘_ _∘-↣_ ↦ _↣-∘_ _∘-↠_ ↦ _↠-∘_ _∘-⤖_ ↦ _⤖-∘_ _∘-⇔_ ↦ _⇔-∘_ _∘-↩_ ↦ _↩-∘_ _∘-↪_ ↦ _↪-∘_ _∘-↔_ ↦ _↔-∘_
- In
Function.Construct.Identity
:
id-⟶ ↦ ⟶-id id-↣ ↦ ↣-id id-↠ ↦ ↠-id id-⤖ ↦ ⤖-id id-⇔ ↦ ⇔-id id-↩ ↦ ↩-id id-↪ ↦ ↪-id id-↔ ↦ ↔-id
- In
-
In
Function.Construct.Symmetry
:sym-⤖ ↦ ⤖-sym sym-⇔ ↦ ⇔-sym sym-↩ ↦ ↩-sym sym-↪ ↦ ↪-sym sym-↔ ↦ ↔-sym
-
In
Foreign.Haskell.Either
andForeign.Haskell.Pair
:toForeign ↦ Foreign.Haskell.Coerce.coerce fromForeign ↦ Foreign.Haskell.Coerce.coerce
-
In
Relation.Binary.Properties.Preorder
:invIsPreorder ↦ converse-isPreorder invPreorder ↦ converse-preorder
- This fixes the fact we had picked the wrong name originally. The erased modality
corresponds to @0 whereas the irrelevance one corresponds to
.
.
in favour of `with ... in ...` syntax (issue #1580; PRs #1630, #1930)
- In
Relation.Binary.PropositionalEquality
both the record typeReveal_·_is_
and its principal mode of use,inspect
, have been deprecated in favour of the newwith ... in ...
syntax. See the documentation of with-abstraction equality
-
Algebraic structures when freely adding an identity element:
Algebra.Construct.Add.Identity
-
Operations for module-like algebraic structures:
Algebra.Module.Core
-
Constructive algebraic structures with apartness relations:
Algebra.Apartness Algebra.Apartness.Bundles Algebra.Apartness.Structures Algebra.Apartness.Properties.CommutativeHeytingAlgebra Relation.Binary.Properties.ApartnessRelation
-
Algebraic structures obtained by flipping their binary operations:
Algebra.Construct.Flip.Op
-
Morphisms between module-like algebraic structures:
Algebra.Module.Morphism.Construct.Composition Algebra.Module.Morphism.Construct.Identity Algebra.Module.Morphism.Definitions Algebra.Module.Morphism.Structures Algebra.Module.Properties
-
Identity morphisms and composition of morphisms between algebraic structures:
Algebra.Morphism.Construct.Composition Algebra.Morphism.Construct.Identity
-
Ordered algebraic structures (pomonoids, posemigroups, etc.)
Algebra.Ordered Algebra.Ordered.Bundles Algebra.Ordered.Structures
-
'Optimised' tail-recursive exponentiation properties:
Algebra.Properties.Semiring.Exp.TailRecursiveOptimised
-
A definition of infinite streams using coinductive records:
Codata.Guarded.Stream Codata.Guarded.Stream.Properties Codata.Guarded.Stream.Relation.Binary.Pointwise Codata.Guarded.Stream.Relation.Unary.All Codata.Guarded.Stream.Relation.Unary.Any
-
A small library for function arguments with default values:
Data.Default
-
A small library for a non-empty fresh list:
Data.List.Fresh.NonEmpty
-
A small library defining a structurally inductive view of lists:
Data.List.Relation.Unary.Sufficient
-
Combinations and permutations for ℕ.
Data.Nat.Combinatorics Data.Nat.Combinatorics.Base Data.Nat.Combinatorics.Spec
-
A small library defining parity and its algebra:
Data.Parity Data.Parity.Base Data.Parity.Instances Data.Parity.Properties
-
New base module for
Data.Product
containing only the basic definitions.Data.Product.Base
-
Reflection utilities for some specific types:
Data.List.Reflection Data.Vec.Reflection
-
The
All
predicate over non-empty lists:Data.List.NonEmpty.Relation.Unary.All
-
Show module for unnormalised rationals:
Data.Rational.Unnormalised.Show
-
Membership relations for maps and sets
Data.Tree.AVL.Map.Membership.Propositional Data.Tree.AVL.Map.Membership.Propositional.Properties Data.Tree.AVL.Sets.Membership Data.Tree.AVL.Sets.Membership.Properties
-
Properties of bijections:
Function.Consequences Function.Properties.Bijection Function.Properties.RightInverse Function.Properties.Surjection
-
In order to improve modularity, the contents of
Relation.Binary.Lattice
has been split out into the standard:Relation.Binary.Lattice.Definitions Relation.Binary.Lattice.Structures Relation.Binary.Lattice.Bundles
All contents is re-exported by
Relation.Binary.Lattice
as before. -
Algebraic properties of
_∩_
and_∪_
for predicatesRelation.Unary.Algebra
-
Both versions of equality on predications are equivalences
Relation.Unary.Relation.Binary.Equality
-
The subset relations on predicates define an order
Relation.Unary.Relation.Binary.Subset
-
Polymorphic versions of some unary relations and their properties
Relation.Unary.Polymorphic Relation.Unary.Polymorphic.Properties
-
Alpha equality over reflected terms
Reflection.AST.AlphaEquality
-
cong!
tactic for deriving arguments tocong
Tactic.Cong
-
Various system types and primitives:
System.Clock.Primitive System.Clock System.Console.ANSI System.Directory.Primitive System.Directory System.FilePath.Posix.Primitive System.FilePath.Posix System.Process.Primitive System.Process
-
A golden testing library with test pools, an options parser, a runner:
Test.Golden
-
New interfaces for using Haskell datatypes:
Foreign.Haskell.List.NonEmpty
-
Added new module
Algebra.Properties.RingWithoutOne
:-‿distribˡ-* : ∀ x y → - (x * y) ≈ - x * y -‿distribʳ-* : ∀ x y → - (x * y) ≈ x * - y
-
An implementation of M-types with
--guardedness
flag:Codata.Guarded.M
-
Port of
Linked
toVec
:Data.Vec.Relation.Unary.Linked Data.Vec.Relation.Unary.Linked.Properties
-
Added Logarithm base 2 on Natural Numbers:
Data.Nat.Logarithm.Core Data.Nat.Logarithm
-
Proofs of some axioms of linearity:
Algebra.Module.Morphism.ModuleHomomorphism Algebra.Module.Properties
-
Properties of MoufangLoop
Algebra.Properties.MoufangLoop
-
Properties of Quasigroup
Algebra.Properties.Quasigroup
-
Properties of MiddleBolLoop
Algebra.Properties.MiddleBolLoop
-
Properties of Loop
Algebra.Properties.Loop
-
Some n-ary functions manipulating lists
Data.List.Nary.NonDependent
-
Properties of KleeneAlgebra
Algebra.Properties.KleeneAlgebra
-
Relations on indexed sets
Function.Indexed.Bundles
-
Added new proof to
Data.Maybe.Properties
<∣>-idem : Idempotent _<∣>_
-
The module
Algebra
now publicly re-exports the contents ofAlgebra.Structures.Biased
. -
Added new definitions to
Algebra.Bundles
:record UnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) record InvertibleMagma c ℓ : Set (suc (c ⊔ ℓ)) record InvertibleUnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) record RawQuasiGroup c ℓ : Set (suc (c ⊔ ℓ)) record Quasigroup c ℓ : Set (suc (c ⊔ ℓ)) record RawLoop c ℓ : Set (suc (c ⊔ ℓ)) record Loop c ℓ : Set (suc (c ⊔ ℓ)) record RingWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) record IdempotentSemiring c ℓ : Set (suc (c ⊔ ℓ)) record KleeneAlgebra c ℓ : Set (suc (c ⊔ ℓ)) record RawRingWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) record Quasiring c ℓ : Set (suc (c ⊔ ℓ)) where record Nearring c ℓ : Set (suc (c ⊔ ℓ)) where record IdempotentMagma c ℓ : Set (suc (c ⊔ ℓ)) record AlternateMagma c ℓ : Set (suc (c ⊔ ℓ)) record FlexibleMagma c ℓ : Set (suc (c ⊔ ℓ)) record MedialMagma c ℓ : Set (suc (c ⊔ ℓ)) record SemimedialMagma c ℓ : Set (suc (c ⊔ ℓ)) record LeftBolLoop c ℓ : Set (suc (c ⊔ ℓ)) record RightBolLoop c ℓ : Set (suc (c ⊔ ℓ)) record MoufangLoop c ℓ : Set (suc (c ⊔ ℓ)) record NonAssociativeRing c ℓ : Set (suc (c ⊔ ℓ)) record MiddleBolLoop c ℓ : Set (suc (c ⊔ ℓ))
and the existing record
Lattice
now provides∨-commutativeSemigroup : CommutativeSemigroup c ℓ ∧-commutativeSemigroup : CommutativeSemigroup c ℓ
and their corresponding algebraic subbundles.
-
Added new proofs to
Algebra.Consequences.Base
:reflexive+selfInverse⇒involutive : Reflexive _≈_ → SelfInverse _≈_ f → Involutive _≈_ f
-
Added new proofs to
Algebra.Consequences.Propositional
:comm+assoc⇒middleFour : Commutative _•_ → Associative _•_ → _•_ MiddleFourExchange _•_ identity+middleFour⇒assoc : Identity e _•_ → _•_ MiddleFourExchange _•_ → Associative _•_ identity+middleFour⇒comm : Identity e _+_ → _•_ MiddleFourExchange _+_ → Commutative _•_
-
Added new proofs to
Algebra.Consequences.Setoid
:comm+assoc⇒middleFour : Congruent₂ _•_ → Commutative _•_ → Associative _•_ → _•_ MiddleFourExchange _•_ identity+middleFour⇒assoc : Congruent₂ _•_ → Identity e _•_ → _•_ MiddleFourExchange _•_ → Associative _•_ identity+middleFour⇒comm : Congruent₂ _•_ → Identity e _+_ → _•_ MiddleFourExchange _+_ → Commutative _•_ involutive⇒surjective : Involutive f → Surjective f selfInverse⇒involutive : SelfInverse f → Involutive f selfInverse⇒congruent : SelfInverse f → Congruent f selfInverse⇒inverseᵇ : SelfInverse f → Inverseᵇ f f selfInverse⇒surjective : SelfInverse f → Surjective f selfInverse⇒injective : SelfInverse f → Injective f selfInverse⇒bijective : SelfInverse f → Bijective f comm+idˡ⇒id : Commutative _•_ → LeftIdentity e _•_ → Identity e _•_ comm+idʳ⇒id : Commutative _•_ → RightIdentity e _•_ → Identity e _•_ comm+zeˡ⇒ze : Commutative _•_ → LeftZero e _•_ → Zero e _•_ comm+zeʳ⇒ze : Commutative _•_ → RightZero e _•_ → Zero e _•_ comm+invˡ⇒inv : Commutative _•_ → LeftInverse e _⁻¹ _•_ → Inverse e _⁻¹ _•_ comm+invʳ⇒inv : Commutative _•_ → RightInverse e _⁻¹ _•_ → Inverse e _⁻¹ _•_ comm+distrˡ⇒distr : Commutative _•_ → _•_ DistributesOverˡ _◦_ → _•_ DistributesOver _◦_ comm+distrʳ⇒distr : Commutative _•_ → _•_ DistributesOverʳ _◦_ → _•_ DistributesOver _◦_ distrib+absorbs⇒distribˡ : Associative _•_ → Commutative _◦_ → _•_ Absorbs _◦_ → _◦_ Absorbs _•_ → _◦_ DistributesOver _•_ → _•_ DistributesOverˡ _◦_
-
Added new functions to
Algebra.Construct.DirectProduct
:rawSemiring : RawSemiring a ℓ₁ → RawSemiring b ℓ₂ → RawSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawRing : RawRing a ℓ₁ → RawRing b ℓ₂ → RawRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂) semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ₁ → SemiringWithoutAnnihilatingZero b ℓ₂ → SemiringWithoutAnnihilatingZero (a ⊔ b) (ℓ₁ ⊔ ℓ₂) semiring : Semiring a ℓ₁ → Semiring b ℓ₂ → Semiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) commutativeSemiring : CommutativeSemiring a ℓ₁ → CommutativeSemiring b ℓ₂ → CommutativeSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) ring : Ring a ℓ₁ → Ring b ℓ₂ → Ring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) commutativeRing : CommutativeRing a ℓ₁ → CommutativeRing b ℓ₂ → CommutativeRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawQuasigroup : RawQuasigroup a ℓ₁ → RawQuasigroup b ℓ₂ → RawQuasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawLoop : RawLoop a ℓ₁ → RawLoop b ℓ₂ → RawLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) unitalMagma : UnitalMagma a ℓ₁ → UnitalMagma b ℓ₂ → UnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) invertibleMagma : InvertibleMagma a ℓ₁ → InvertibleMagma b ℓ₂ → InvertibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) invertibleUnitalMagma : InvertibleUnitalMagma a ℓ₁ → InvertibleUnitalMagma b ℓ₂ → InvertibleUnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) quasigroup : Quasigroup a ℓ₁ → Quasigroup b ℓ₂ → Quasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂) loop : Loop a ℓ₁ → Loop b ℓ₂ → Loop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) idempotentSemiring : IdempotentSemiring a ℓ₁ → IdempotentSemiring b ℓ₂ → IdempotentSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) idempotentMagma : IdempotentMagma a ℓ₁ → IdempotentMagma b ℓ₂ → IdempotentMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) alternativeMagma : AlternativeMagma a ℓ₁ → AlternativeMagma b ℓ₂ → AlternativeMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) flexibleMagma : FlexibleMagma a ℓ₁ → FlexibleMagma b ℓ₂ → FlexibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) medialMagma : MedialMagma a ℓ₁ → MedialMagma b ℓ₂ → MedialMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) semimedialMagma : SemimedialMagma a ℓ₁ → SemimedialMagma b ℓ₂ → SemimedialMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) kleeneAlgebra : KleeneAlgebra a ℓ₁ → KleeneAlgebra b ℓ₂ → KleeneAlgebra (a ⊔ b) (ℓ₁ ⊔ ℓ₂) leftBolLoop : LeftBolLoop a ℓ₁ → LeftBolLoop b ℓ₂ → LeftBolLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rightBolLoop : RightBolLoop a ℓ₁ → RightBolLoop b ℓ₂ → RightBolLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) middleBolLoop : MiddleBolLoop a ℓ₁ → MiddleBolLoop b ℓ₂ → MiddleBolLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) moufangLoop : MoufangLoop a ℓ₁ → MoufangLoop b ℓ₂ → MoufangLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawRingWithoutOne : RawRingWithoutOne a ℓ₁ → RawRingWithoutOne b ℓ₂ → RawRingWithoutOne (a ⊔ b) (ℓ₁ ⊔ ℓ₂) ringWithoutOne : RingWithoutOne a ℓ₁ → RingWithoutOne b ℓ₂ → RingWithoutOne (a ⊔ b) (ℓ₁ ⊔ ℓ₂) nonAssociativeRing : NonAssociativeRing a ℓ₁ → NonAssociativeRing b ℓ₂ → NonAssociativeRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂) quasiring : Quasiring a ℓ₁ → Quasiring b ℓ₂ → Quasiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) nearring : Nearring a ℓ₁ → Nearring b ℓ₂ → Nearring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
* Added new definition to `Algebra.Definitions`:
```agda
_MiddleFourExchange_ : Op₂ A → Op₂ A → Set _
SelfInverse : Op₁ A → Set _
LeftDividesˡ : Op₂ A → Op₂ A → Set _
LeftDividesʳ : Op₂ A → Op₂ A → Set _
RightDividesˡ : Op₂ A → Op₂ A → Set _
RightDividesʳ : Op₂ A → Op₂ A → Set _
LeftDivides : Op₂ A → Op₂ A → Set _
RightDivides : Op₂ A → Op₂ A → Set _
LeftInvertible e _∙_ x = ∃[ x⁻¹ ] (x⁻¹ ∙ x) ≈ e
RightInvertible e _∙_ x = ∃[ x⁻¹ ] (x ∙ x⁻¹) ≈ e
Invertible e _∙_ x = ∃[ x⁻¹ ] ((x⁻¹ ∙ x) ≈ e) × ((x ∙ x⁻¹) ≈ e)
StarRightExpansive e _+_ _∙_ _⁻* = ∀ x → (e + (x ∙ (x ⁻*))) ≈ (x ⁻*)
StarLeftExpansive e _+_ _∙_ _⁻* = ∀ x → (e + ((x ⁻*) ∙ x)) ≈ (x ⁻*)
StarExpansive e _+_ _∙_ _* = (StarLeftExpansive e _+_ _∙_ _*) × (StarRightExpansive e _+_ _∙_ _*)
StarLeftDestructive _+_ _∙_ _* = ∀ a b x → (b + (a ∙ x)) ≈ x → ((a *) ∙ b) ≈ x
StarRightDestructive _+_ _∙_ _* = ∀ a b x → (b + (x ∙ a)) ≈ x → (b ∙ (a *)) ≈ x
StarDestructive _+_ _∙_ _* = (StarLeftDestructive _+_ _∙_ _*) × (StarRightDestructive _+_ _∙_ _*)
LeftAlternative _∙_ = ∀ x y → ((x ∙ x) ∙ y) ≈ (x ∙ (y ∙ y))
RightAlternative _∙_ = ∀ x y → (x ∙ (y ∙ y)) ≈ ((x ∙ y) ∙ y)
Alternative _∙_ = (LeftAlternative _∙_ ) × (RightAlternative _∙_)
Flexible _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ (x ∙ (y ∙ x))
Medial _∙_ = ∀ x y u z → ((x ∙ y) ∙ (u ∙ z)) ≈ ((x ∙ u) ∙ (y ∙ z))
LeftSemimedial _∙_ = ∀ x y z → ((x ∙ x) ∙ (y ∙ z)) ≈ ((x ∙ y) ∙ (x ∙ z))
RightSemimedial _∙_ = ∀ x y z → ((y ∙ z) ∙ (x ∙ x)) ≈ ((y ∙ x) ∙ (z ∙ x))
Semimedial _∙_ = (LeftSemimedial _∙_) × (RightSemimedial _∙_)
LeftBol _∙_ = ∀ x y z → (x ∙ (y ∙ (x ∙ z))) ≈ ((x ∙ (y ∙ z)) ∙ z )
RightBol _∙_ = ∀ x y z → (((z ∙ x) ∙ y) ∙ x) ≈ (z ∙ ((x ∙ y) ∙ x))
MiddleBol _∙_ _\\_ _//_ = ∀ x y z → (x ∙ ((y ∙ z) \\ x)) ≈ ((x // z) ∙ (y \\ x))
-
Added new functions to
Algebra.Definitions.RawSemiring
:_^[_]*_ : A → ℕ → A → A _^ᵗ_ : A → ℕ → A
-
Algebra.Properties.Magma.Divisibility
now re-exports operations_∣ˡ_
,_∤ˡ_
,_∣ʳ_
,_∤ʳ_
fromAlgebra.Definitions.Magma
. -
Added new proofs to
Algebra.Properties.CommutativeSemigroup
:interchange : Interchangable _∙_ _∙_ xy∙xx≈x∙yxx : ∀ x y → (x ∙ y) ∙ (x ∙ x) ≈ x ∙ (y ∙ (x ∙ x)) leftSemimedial : LeftSemimedial _∙_ rightSemimedial : RightSemimedial _∙_ middleSemimedial : ∀ x y z → (x ∙ y) ∙ (z ∙ x) ≈ (x ∙ z) ∙ (y ∙ x) semimedial : Semimedial _∙_
-
Added new proof to
Algebra.Properties.Monoid.Mult
:×-congˡ : ∀ {x} → (_× x) Preserves _≡_ ⟶ _≈_
-
Added new proof to
Algebra.Properties.Monoid.Sum
:sum-init-last : ∀ {n} (t : Vector _ (suc n)) → sum t ≈ sum (init t) + last t
-
Added new proofs to
Algebra.Properties.Semigroup
:leftAlternative : LeftAlternative _∙_ rightAlternative : RightAlternative _∙_ alternative : Alternative _∙_ flexible : Flexible _∙_
-
Added new proofs to
Algebra.Properties.Semiring.Exp
:^-congʳ : (x ^_) Preserves _≡_ ⟶ _≈_ y*x^m*y^n≈x^m*y^[n+1] : (x * y ≈ y * x) → y * (x ^ m * y ^ n) ≈ x ^ m * y ^ suc n
-
Added new proofs to
Algebra.Properties.Semiring.Mult
:1×-identityʳ : 1 × x ≈ x ×-comm-* : x * (n × y) ≈ n × (x * y) ×-assoc-* : (n × x) * y ≈ n × (x * y)
-
Added new proofs to
Algebra.Properties.Ring
:-1*x≈-x : ∀ x → - 1# * x ≈ - x x+x≈x⇒x≈0 : ∀ x → x + x ≈ x → x ≈ 0# x[y-z]≈xy-xz : ∀ x y z → x * (y - z) ≈ x * y - x * z [y-z]x≈yx-zx : ∀ x y z → (y - z) * x ≈ (y * x) - (z * x)
-
Added new definitions to
Algebra.Structures
:record IsUnitalMagma (_∙_ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) record IsInvertibleMagma (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) record IsInvertibleUnitalMagma (_∙_ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) record IsQuasigroup (∙ \\ // : Op₂ A) : Set (a ⊔ ℓ) record IsLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) record IsRingWithoutOne (+ * : Op₂ A) (-_ : Op₁ A) (0# : A) : Set (a ⊔ ℓ) record IsIdempotentSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) record IsKleeneAlgebra (+ * : Op₂ A) (⋆ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) record IsQuasiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where record IsNearring (+ * : Op₂ A) (0# 1# : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where record IsIdempotentMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) record IsAlternativeMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) record IsFlexibleMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) record IsMedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) record IsSemimedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) record IsLeftBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) record IsRightBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) record IsMoufangLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) record IsNonAssociativeRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) record IsMiddleBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ)
and the existing record
IsLattice
now provides∨-isCommutativeSemigroup : IsCommutativeSemigroup ∨ ∧-isCommutativeSemigroup : IsCommutativeSemigroup ∧
and their corresponding algebraic substructures.
-
Added new records to
Algebra.Morphism.Structures
:record IsQuasigroupHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsQuasigroupMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsQuasigroupIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) record IsLoopHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsLoopMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsLoopIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) record IsRingWithoutOneHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsRingWithoutOneMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsRingWithoutOneIsoMorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
-
Added new proofs in
Data.Bool.Properties
:<-wellFounded : WellFounded _<_ ∨-conicalˡ : LeftConical false _∨_ ∨-conicalʳ : RightConical false _∨_ ∨-conical : Conical false _∨_ ∧-conicalˡ : LeftConical true _∧_ ∧-conicalʳ : RightConical true _∧_ ∧-conical : Conical true _∧_ true-xor : true xor x ≡ not x xor-same : x xor x ≡ false not-distribˡ-xor : not (x xor y) ≡ (not x) xor y not-distribʳ-xor : not (x xor y) ≡ x xor (not y) xor-assoc : Associative _xor_ xor-comm : Commutative _xor_ xor-identityˡ : LeftIdentity false _xor_ xor-identityʳ : RightIdentity false _xor_ xor-identity : Identity false _xor_ xor-inverseˡ : LeftInverse true not _xor_ xor-inverseʳ : RightInverse true not _xor_ xor-inverse : Inverse true not _xor_ ∧-distribˡ-xor : _∧_ DistributesOverˡ _xor_ ∧-distribʳ-xor : _∧_ DistributesOverʳ _xor_ ∧-distrib-xor : _∧_ DistributesOver _xor_ xor-annihilates-not : (not x) xor (not y) ≡ x xor y
-
Added new functions in
Data.Fin.Base
:finToFun : Fin (m ^ n) → (Fin n → Fin m) funToFin : (Fin m → Fin n) → Fin (n ^ m) quotient : Fin (m * n) → Fin m remainder : Fin (m * n) → Fin n
-
Added new proofs in
Data.Fin.Induction
: every (strict) partial order is well-founded and Noetherian.spo-wellFounded : ∀ {r} {_⊏_ : Rel (Fin n) r} → IsStrictPartialOrder _≈_ _⊏_ → WellFounded _⊏_ spo-noetherian : ∀ {r} {_⊏_ : Rel (Fin n) r} → IsStrictPartialOrder _≈_ _⊏_ → WellFounded (flip _⊏_)
-
Added new definitions and proofs in
Data.Fin.Permutation
:insert : Fin (suc m) → Fin (suc n) → Permutation m n → Permutation (suc m) (suc n) insert-punchIn : insert i j π ⟨$⟩ʳ punchIn i k ≡ punchIn j (π ⟨$⟩ʳ k) insert-remove : insert i (π ⟨$⟩ʳ i) (remove i π) ≈ π remove-insert : remove i (insert i j π) ≈ π
-
In
Data.Fin.Properties
: the proof that an injection from a typeA
intoFin n
induces a decision procedure for_≡_
onA
has been generalized to other equivalences overA
(i.e. to arbitrary setoids), and renamed fromeq?
to the more descriptiveinj⇒≟
andinj⇒decSetoid
. -
Added new proofs in
Data.Fin.Properties
:1↔⊤ : Fin 1 ↔ ⊤ 0≢1+n : zero ≢ suc i ↑ˡ-injective : i ↑ˡ n ≡ j ↑ˡ n → i ≡ j ↑ʳ-injective : n ↑ʳ i ≡ n ↑ʳ j → i ≡ j finTofun-funToFin : funToFin ∘ finToFun ≗ id funTofin-funToFun : finToFun (funToFin f) ≗ f ^↔→ : Extensionality _ _ → Fin (m ^ n) ↔ (Fin n → Fin m) toℕ-mono-< : i < j → toℕ i ℕ.< toℕ j toℕ-mono-≤ : i ≤ j → toℕ i ℕ.≤ toℕ j toℕ-cancel-≤ : toℕ i ℕ.≤ toℕ j → i ≤ j toℕ-cancel-< : toℕ i ℕ.< toℕ j → i < j splitAt⁻¹-↑ˡ : splitAt m {n} i ≡ inj₁ j → j ↑ˡ n ≡ i splitAt⁻¹-↑ʳ : splitAt m {n} i ≡ inj₂ j → m ↑ʳ j ≡ i toℕ-combine : toℕ (combine i j) ≡ k ℕ.* toℕ i ℕ.+ toℕ j combine-injectiveˡ : combine i j ≡ combine k l → i ≡ k combine-injectiveʳ : combine i j ≡ combine k l → j ≡ l combine-injective : combine i j ≡ combine k l → i ≡ k × j ≡ l combine-surjective : ∀ i → ∃₂ λ j k → combine j k ≡ i combine-monoˡ-< : i < j → combine i k < combine j l ℕ-ℕ≡toℕ‿ℕ- : n ℕ-ℕ i ≡ toℕ (n ℕ- i) lower₁-injective : lower₁ i n≢i ≡ lower₁ j n≢j → i ≡ j pinch-injective : suc i ≢ j → suc i ≢ k → pinch i j ≡ pinch i k → j ≡ k i<1+i : i < suc i injective⇒≤ : ∀ {f : Fin m → Fin n} → Injective f → m ℕ.≤ n <⇒notInjective : ∀ {f : Fin m → Fin n} → n ℕ.< m → ¬ (Injective f) ℕ→Fin-notInjective : ∀ (f : ℕ → Fin n) → ¬ (Injective f) cantor-schröder-bernstein : ∀ {f : Fin m → Fin n} {g : Fin n → Fin m} → Injective f → Injective g → m ≡ n cast-is-id : cast eq k ≡ k subst-is-cast : subst Fin eq k ≡ cast eq k cast-trans : cast eq₂ (cast eq₁ k) ≡ cast (trans eq₁ eq₂) k
-
Added new functions in
Data.Integer.Base
:_^_ : ℤ → ℕ → ℤ +-0-rawGroup : Rawgroup 0ℓ 0ℓ *-rawMagma : RawMagma 0ℓ 0ℓ *-1-rawMonoid : RawMonoid 0ℓ 0ℓ
* Added new proofs in `Data.Integer.Properties`:
```agda
sign-cong′ : s₁ ◃ n₁ ≡ s₂ ◃ n₂ → s₁ ≡ s₂ ⊎ (n₁ ≡ 0 × n₂ ≡ 0)
≤-⊖ : m ℕ.≤ n → n ⊖ m ≡ + (n ∸ m)
∣⊖∣-≤ : m ℕ.≤ n → ∣ m ⊖ n ∣ ≡ n ∸ m
∣-∣-≤ : i ≤ j → + ∣ i - j ∣ ≡ j - i
i^n≡0⇒i≡0 : i ^ n ≡ 0ℤ → i ≡ 0ℤ
^-identityʳ : i ^ 1 ≡ i
^-zeroˡ : 1 ^ n ≡ 1
^-*-assoc : (i ^ m) ^ n ≡ i ^ (m ℕ.* n)
^-distribˡ-+-* : i ^ (m ℕ.+ n) ≡ i ^ m * i ^ n
^-isMagmaHomomorphism : IsMagmaHomomorphism ℕ.+-rawMagma *-rawMagma (i ^_)
^-isMonoidHomomorphism : IsMonoidHomomorphism ℕ.+-0-rawMonoid *-1-rawMonoid (i ^_)
-
Added new proofs in
Data.Integer.GCD
:gcd-assoc : Associative gcd gcd-zeroˡ : LeftZero 1ℤ gcd gcd-zeroʳ : RightZero 1ℤ gcd gcd-zero : Zero 1ℤ gcd
-
Added new functions in
Data.List
:takeWhileᵇ : (A → Bool) → List A → List A dropWhileᵇ : (A → Bool) → List A → List A filterᵇ : (A → Bool) → List A → List A partitionᵇ : (A → Bool) → List A → List A × List A spanᵇ : (A → Bool) → List A → List A × List A breakᵇ : (A → Bool) → List A → List A × List A linesByᵇ : (A → Bool) → List A → List (List A) wordsByᵇ : (A → Bool) → List A → List (List A) derunᵇ : (A → A → Bool) → List A → List A deduplicateᵇ : (A → A → Bool) → List A → List A findᵇ : (A → Bool) → List A -> Maybe A findIndexᵇ : (A → Bool) → (xs : List A) → Maybe $ Fin (length xs) findIndicesᵇ : (A → Bool) → (xs : List A) → List $ Fin (length xs) find : Decidable P → List A → Maybe A findIndex : Decidable P → (xs : List A) → Maybe $ Fin (length xs) findIndices : Decidable P → (xs : List A) → List $ Fin (length xs)
-
Added new functions and definitions to
Data.List.Base
:catMaybes : List (Maybe A) → List A ap : List (A → B) → List A → List B ++-rawMagma : Set a → RawMagma a _ ++-[]-rawMonoid : Set a → RawMonoid a _
-
Added new proofs in
Data.List.Relation.Binary.Lex.Strict
:xs≮[] : ¬ xs < []
-
Added new proofs to
Data.List.Relation.Binary.Permutation.Propositional.Properties
:Any-resp-[σ⁻¹∘σ] : (σ : xs ↭ ys) → (ix : Any P xs) → Any-resp-↭ (trans σ (↭-sym σ)) ix ≡ ix ∈-resp-[σ⁻¹∘σ] : (σ : xs ↭ ys) → (ix : x ∈ xs) → ∈-resp-↭ (trans σ (↭-sym σ)) ix ≡ ix
-
Added new functions in
Data.List.Relation.Unary.All
:decide : Π[ P ∪ Q ] → Π[ All P ∪ Any Q ]
-
Added new functions in
Data.List.Fresh.Relation.Unary.All
:decide : Π[ P ∪ Q ] → Π[ All {R = R} P ∪ Any Q ]
-
Added new proofs to
Data.List.Membership.Propositional.Properties
:mapWith∈-id : mapWith∈ xs (λ {x} _ → x) ≡ xs map-mapWith∈ : map g (mapWith∈ xs f) ≡ mapWith∈ xs (g ∘′ f)
-
Added new proofs to
Data.List.Membership.Setoid.Properties
:mapWith∈-id : mapWith∈ xs (λ {x} _ → x) ≡ xs map-mapWith∈ : map g (mapWith∈ xs f) ≡ mapWith∈ xs (g ∘′ f) index-injective : index x₁∈xs ≡ index x₂∈xs → x₁ ≈ x₂
-
Add new proofs in
Data.List.Properties
:∈⇒∣product : n ∈ ns → n ∣ product ns ∷ʳ-++ : xs ∷ʳ a ++ ys ≡ xs ++ a ∷ ys concatMap-cong : f ≗ g → concatMap f ≗ concatMap g concatMap-pure : concatMap [_] ≗ id concatMap-map : concatMap g (map f xs) ≡ concatMap (g ∘′ f) xs map-concatMap : map f ∘′ concatMap g ≗ concatMap (map f ∘′ g) length-isMagmaHomomorphism : (A : Set a) → IsMagmaHomomorphism (++-rawMagma A) +-rawMagma length length-isMonoidHomomorphism : (A : Set a) → IsMonoidHomomorphism (++-[]-rawMonoid A) +-0-rawMonoid length take-map : take n (map f xs) ≡ map f (take n xs) drop-map : drop n (map f xs) ≡ map f (drop n xs) head-map : head (map f xs) ≡ Maybe.map f (head xs) take-suc : take (suc m) xs ≡ take m xs ∷ʳ lookup xs i take-suc-tabulate : take (suc m) (tabulate f) ≡ take m (tabulate f) ∷ʳ f i drop-take-suc : drop m (take (suc m) xs) ≡ [ lookup xs i ] drop-take-suc-tabulate : drop m (take (suc m) (tabulate f)) ≡ [ f i ] take-all : n ≥ length xs → take n xs ≡ xs take-[] : take m [] ≡ [] drop-[] : drop m [] ≡ [] map-replicate : map f (replicate n x) ≡ replicate n (f x) drop-drop : drop n (drop m xs) ≡ drop (m + n) xs
-
Added new patterns and definitions to
Data.Nat.Base
:pattern z<s {n} = s≤s (z≤n {n}) pattern s<s {m} {n} m<n = s≤s {m} {n} m<n pattern <′-base = ≤′-refl pattern <′-step {n} m<′n = ≤′-step {n} m<′n _⊔′_ : ℕ → ℕ → ℕ _⊓′_ : ℕ → ℕ → ℕ ∣_-_∣′ : ℕ → ℕ → ℕ _! : ℕ → ℕ parity : ℕ → Parity +-rawMagma : RawMagma 0ℓ 0ℓ +-0-rawMonoid : RawMonoid 0ℓ 0ℓ *-rawMagma : RawMagma 0ℓ 0ℓ *-1-rawMonoid : RawMonoid 0ℓ 0ℓ +-*-rawNearSemiring : RawNearSemiring 0ℓ 0ℓ +-*-rawSemiring : RawSemiring 0ℓ 0ℓ
-
Added a new proof to
Data.Nat.Binary.Properties
:suc-injective : Injective _≡_ _≡_ suc toℕ-inverseˡ : Inverseˡ _≡_ _≡_ toℕ fromℕ toℕ-inverseʳ : Inverseʳ _≡_ _≡_ toℕ fromℕ toℕ-inverseᵇ : Inverseᵇ _≡_ _≡_ toℕ fromℕ
-
Added a new pattern synonym to
Data.Nat.Divisibility.Core
:pattern divides-refl q = divides q refl
-
Added new definitions and proofs to
Data.Nat.Primality
:Composite : ℕ → Set composite? : Decidable composite composite⇒¬prime : Composite n → ¬ Prime n ¬composite⇒prime : 2 ≤ n → ¬ Composite n → Prime n prime⇒¬composite : Prime n → ¬ Composite n ¬prime⇒composite : 2 ≤ n → ¬ Prime n → Composite n euclidsLemma : Prime p → p ∣ m * n → p ∣ m ⊎ p ∣ n
-
Added new proofs in
Data.Nat.Properties
:nonZero? : Decidable NonZero n≮0 : n ≮ 0 n+1+m≢m : n + suc m ≢ m m*n≡0⇒m≡0 : .{{_ : NonZero n}} → m * n ≡ 0 → m ≡ 0 n>0⇒n≢0 : n > 0 → n ≢ 0 m^n≢0 : .{{_ : NonZero m}} → NonZero (m ^ n) m*n≢0 : .{{_ : NonZero m}} .{{_ : NonZero n}} → NonZero (m * n) m≤n⇒n∸m≤n : m ≤ n → n ∸ m ≤ n ≤-pred : suc m ≤ suc n → m ≤ n s<s-injective : ∀ {p q : m < n} → s<s p ≡ s<s q → p ≡ q <-pred : suc m < suc n → m < n <-step : m < n → m < 1 + n m<1+n⇒m<n∨m≡n : m < suc n → m < n ⊎ m ≡ n z<′s : zero <′ suc n s<′s : m <′ n → suc m <′ suc n <⇒<′ : m < n → m <′ n <′⇒< : m <′ n → m < n m+n≤p⇒m≤p∸n : m + n ≤ p → m ≤ p ∸ n m≤p∸n⇒m+n≤p : n ≤ p → m ≤ p ∸ n → m + n ≤ p 1≤n! : 1 ≤ n ! _!≢0 : NonZero (n !) _!*_!≢0 : NonZero (m ! * n !) anyUpTo? : ∀ (P? : U.Decidable P) (v : ℕ) → Dec (∃ λ n → n < v × P n) allUpTo? : ∀ (P? : U.Decidable P) (v : ℕ) → Dec (∀ {n} → n < v → P n) n≤1⇒n≡0∨n≡1 : n ≤ 1 → n ≡ 0 ⊎ n ≡ 1 m^n>0 : ∀ m .{{_ : NonZero m}} n → m ^ n > 0 ^-monoˡ-≤ : ∀ n → (_^ n) Preserves _≤_ ⟶ _≤_ ^-monoʳ-≤ : ∀ m .{{_ : NonZero m}} → (m ^_) Preserves _≤_ ⟶ _≤_ ^-monoˡ-< : ∀ n .{{_ : NonZero n}} → (_^ n) Preserves _<_ ⟶ _<_ ^-monoʳ-< : ∀ m → 1 < m → (m ^_) Preserves _<_ ⟶ _<_ n≡⌊n+n/2⌋ : n ≡ ⌊ n + n /2⌋ n≡⌈n+n/2⌉ : n ≡ ⌈ n + n /2⌉ m<n⇒m<n*o : .{{_ : NonZero o}} → m < n → m < n * o m<n⇒m<o*n : .{{_ : NonZero o}} → m < n → m < o * n ∸-monoˡ-< : m < o → n ≤ m → m ∸ n < o ∸ n m≤n⇒∣m-n∣≡n∸m : m ≤ n → ∣ m - n ∣ ≡ n ∸ m ⊔≡⊔′ : m ⊔ n ≡ m ⊔′ n ⊓≡⊓′ : m ⊓ n ≡ m ⊓′ n ∣-∣≡∣-∣′ : ∣ m - n ∣ ≡ ∣ m - n ∣′
-
Re-exported additional functions from
Data.Nat
:nonZero? : Decidable NonZero eq? : A ↣ ℕ → DecidableEquality A ≤-<-connex : Connex _≤_ _<_ ≥->-connex : Connex _≥_ _>_ <-≤-connex : Connex _<_ _≤_ >-≥-connex : Connex _>_ _≥_ <-cmp : Trichotomous _≡_ _<_ anyUpTo? : (P? : Decidable P) → ∀ v → Dec (∃ λ n → n < v × P n) allUpTo? : (P? : Decidable P) → ∀ v → Dec (∀ {n} → n < v → P n)
-
Added new proofs in
Data.Nat.Combinatorics
:[n-k]*[n-k-1]!≡[n-k]! : k < n → (n ∸ k) * (n ∸ suc k) ! ≡ (n ∸ k) ! [n-k]*d[k+1]≡[k+1]*d[k] : k < n → (n ∸ k) * ((suc k) ! * (n ∸ suc k) !) ≡ (suc k) * (k ! * (n ∸ k) !) k![n∸k]!∣n! : k ≤ n → k ! * (n ∸ k) ! ∣ n ! nP1≡n : n P 1 ≡ n nC1≡n : n C 1 ≡ n nCk+nC[k+1]≡[n+1]C[k+1] : n C k + n C (suc k) ≡ suc n C suc k
-
Added new proofs in
Data.Nat.DivMod
:m%n≤n : .{{_ : NonZero n}} → m % n ≤ n m*n/m!≡n/[m∸1]! : .{{_ : NonZero m}} → m * n / m ! ≡ n / (pred m) ! %-congˡ : .⦃ _ : NonZero o ⦄ → m ≡ n → m % o ≡ n % o %-congʳ : .⦃ _ : NonZero m ⦄ .⦃ _ : NonZero n ⦄ → m ≡ n → o % m ≡ o % n m≤n⇒[n∸m]%m≡n%m : .⦃ _ : NonZero m ⦄ → m ≤ n → (n ∸ m) % m ≡ n % m m*n≤o⇒[o∸m*n]%n≡o%n : .⦃ _ : NonZero n ⦄ → m * n ≤ o → (o ∸ m * n) % n ≡ o % n m∣n⇒o%n%m≡o%m : .⦃ _ : NonZero m ⦄ .⦃ _ : NonZero n ⦄ → m ∣ n → o % n % m ≡ o % m m<n⇒m%n≡m : .⦃ _ : NonZero n ⦄ → m < n → m % n ≡ m m*n/o*n≡m/o : .⦃ _ : NonZero o ⦄ ⦃ _ : NonZero (o * n) ⦄ → m * n / (o * n) ≡ m / o m<n*o⇒m/o<n : .⦃ _ : NonZero o ⦄ → m < n * o → m / o < n [m∸n]/n≡m/n∸1 : .⦃ _ : NonZero n ⦄ → (m ∸ n) / n ≡ pred (m / n) [m∸n*o]/o≡m/o∸n : .⦃ _ : NonZero o ⦄ → (m ∸ n * o) / o ≡ m / o ∸ n m/n/o≡m/[n*o] : .⦃ _ : NonZero n ⦄ .⦃ _ : NonZero o ⦄ .⦃ _ : NonZero (n * o) ⦄ → m / n / o ≡ m / (n * o) m%[n*o]/o≡m/o%n : .⦃ _ : NonZero n ⦄ .⦃ _ : NonZero o ⦄ ⦃ _ : NonZero (n * o) ⦄ → m % (n * o) / o ≡ m / o % n m%n*o≡m*o%[n*o] : .⦃ _ : NonZero n ⦄ ⦃ _ : NonZero (n * o) ⦄ → m % n * o ≡ m * o % (n * o) [m*n+o]%[p*n]≡[m*n]%[p*n]+o : ⦃ _ : NonZero (p * n) ⦄ → o < n → (m * n + o) % (p * n) ≡ (m * n) % (p * n) + o
-
Added new proofs in
Data.Nat.Divisibility
:n∣m*n*o : n ∣ m * n * o m*n∣⇒m∣ : m * n ∣ i → m ∣ i m*n∣⇒n∣ : m * n ∣ i → n ∣ i m≤n⇒m!∣n! : m ≤ n → m ! ∣ n ! m/n/o≡m/[n*o] : .{{NonZero n}} .{{NonZero o}} → n * o ∣ m → (m / n) / o ≡ m / (n * o)
-
Added new proofs in
Data.Nat.GCD
:gcd-assoc : Associative gcd gcd-identityˡ : LeftIdentity 0 gcd gcd-identityʳ : RightIdentity 0 gcd gcd-identity : Identity 0 gcd gcd-zeroˡ : LeftZero 1 gcd gcd-zeroʳ : RightZero 1 gcd gcd-zero : Zero 1 gcd
-
Added new patterns in
Data.Nat.Reflection
:pattern `ℕ = def (quote ℕ) [] pattern `zero = con (quote ℕ.zero) [] pattern `suc x = con (quote ℕ.suc) (x ⟨∷⟩ [])
-
Added new proofs in
Data.Parity.Properties
:suc-homo-⁻¹ : (parity (suc n)) ⁻¹ ≡ parity n +-homo-+ : parity (m ℕ.+ n) ≡ parity m ℙ.+ parity n *-homo-* : parity (m ℕ.* n) ≡ parity m ℙ.* parity n parity-isMagmaHomomorphism : IsMagmaHomomorphism ℕ.+-rawMagma ℙ.+-rawMagma parity parity-isMonoidHomomorphism : IsMonoidHomomorphism ℕ.+-0-rawMonoid ℙ.+-0-rawMonoid parity parity-isNearSemiringHomomorphism : IsNearSemiringHomomorphism ℕ.+-*-rawNearSemiring ℙ.+-*-rawNearSemiring parity parity-isSemiringHomomorphism : IsSemiringHomomorphism ℕ.+-*-rawSemiring ℙ.+-*-rawSemiring parity
-
Added new rounding functions in
Data.Rational.Base
:floor ceiling truncate round ⌊_⌋ ⌈_⌉ [_] : ℚ → ℤ fracPart : ℚ → ℚ
-
Added new definitions and proofs in
Data.Rational.Properties
:↥ᵘ-toℚᵘ : ↥ᵘ (toℚᵘ p) ≡ ↥ p ↧ᵘ-toℚᵘ : ↧ᵘ (toℚᵘ p) ≡ ↧ p _≥?_ : Decidable _≥_ _>?_ : Decidable _>_ +-*-rawNearSemiring : RawNearSemiring 0ℓ 0ℓ +-*-rawSemiring : RawSemiring 0ℓ 0ℓ toℚᵘ-isNearSemiringHomomorphism-+-* : IsNearSemiringHomomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ toℚᵘ-isNearSemiringMonomorphism-+-* : IsNearSemiringMonomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ toℚᵘ-isSemiringHomomorphism-+-* : IsSemiringHomomorphism +-*-rawSemiring ℚᵘ.+-*-rawSemiring toℚᵘ toℚᵘ-isSemiringMonomorphism-+-* : IsSemiringMonomorphism +-*-rawSemiring ℚᵘ.+-*-rawSemiring toℚᵘ pos⇒nonZero : .{{Positive p}} → NonZero p neg⇒nonZero : .{{Negative p}} → NonZero p nonZero⇒1/nonZero : .{{_ : NonZero p}} → NonZero (1/ p)
-
Added new rounding functions in
Data.Rational.Unnormalised.Base
:floor ceiling truncate round ⌊_⌋ ⌈_⌉ [_] : ℚᵘ → ℤ fracPart : ℚᵘ → ℚᵘ
-
Added new definitions in
Data.Rational.Unnormalised.Properties
:+-*-rawNearSemiring : RawNearSemiring 0ℓ 0ℓ +-*-rawSemiring : RawSemiring 0ℓ 0ℓ ≰⇒≥ : _≰_ ⇒ _≥_ _≥?_ : Decidable _≥_ _>?_ : Decidable _>_ *-mono-≤-nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative r}} → p ≤ q → r ≤ s → p * r ≤ q * s *-mono-<-nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative r}} → p < q → r < s → p * r < q * s 1/-antimono-≤-pos : .{{_ : Positive p}} .{{_ : Positive q}} → p ≤ q → 1/ q ≤ 1/ p ⊓-mono-< : _⊓_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ ⊔-mono-< : _⊔_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ pos⇒nonZero : .{{_ : Positive p}} → NonZero p neg⇒nonZero : .{{_ : Negative p}} → NonZero p pos+pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p + q) nonNeg+nonNeg⇒nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative q}} → NonNegative (p + q) pos*pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p * q) nonNeg*nonNeg⇒nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative q}} → NonNegative (p * q) pos⊓pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p ⊓ q) pos⊔pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p ⊔ q) 1/nonZero⇒nonZero : .{{_ : NonZero p}} → NonZero (1/ p)
-
Added new functions to
Data.Product.Nary.NonDependent
:zipWith : (∀ k → Projₙ as k → Projₙ bs k → Projₙ cs k) → Product n as → Product n bs → Product n cs
-
Added new proof to
Data.Product.Properties
:map-cong : f ≗ g → h ≗ i → map f h ≗ map g i
-
Added new definitions to
Data.Product.Properties
andFunction.Related.TypeIsomorphisms
for convenience:Σ-≡,≡→≡ : (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) → p₁ ≡ p₂ Σ-≡,≡←≡ : p₁ ≡ p₂ → (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) ×-≡,≡→≡ : (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂) → p₁ ≡ p₂ ×-≡,≡←≡ : p₁ ≡ p₂ → (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂)
-
Added new proofs to
Data.Product.Relation.Binary.Lex.Strict
×-respectsʳ : Transitive _≈₁_ → _<₁_ Respectsʳ _≈₁_ → _<₂_ Respectsʳ _≈₂_ → _<ₗₑₓ_ Respectsʳ _≋_ ×-respectsˡ : Symmetric _≈₁_ → Transitive _≈₁_ → _<₁_ Respectsˡ _≈₁_ → _<₂_ Respectsˡ _≈₂_ → _<ₗₑₓ_ Respectsˡ _≋_ ×-wellFounded' : Transitive _≈₁_ → _<₁_ Respectsʳ _≈₁_ → WellFounded _<₁_ → WellFounded _<₂_ → WellFounded _<ₗₑₓ_
-
Added new definitions to
Data.Sign.Base
:*-rawMagma : RawMagma 0ℓ 0ℓ *-1-rawMonoid : RawMonoid 0ℓ 0ℓ *-1-rawGroup : RawGroup 0ℓ 0ℓ
-
Added new proofs to
Data.Sign.Properties
:*-inverse : Inverse + id _*_ *-isCommutativeSemigroup : IsCommutativeSemigroup _*_ *-isCommutativeMonoid : IsCommutativeMonoid _*_ + *-isGroup : IsGroup _*_ + id *-isAbelianGroup : IsAbelianGroup _*_ + id *-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ *-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-group : Group 0ℓ 0ℓ *-abelianGroup : AbelianGroup 0ℓ 0ℓ ≡-isDecEquivalence : IsDecEquivalence _≡_
-
Added new functions in
Data.String.Base
:wordsByᵇ : (Char → Bool) → String → List String linesByᵇ : (Char → Bool) → String → List String
-
Added new proofs in
Data.String.Properties
:≤-isDecTotalOrder-≈ : IsDecTotalOrder _≈_ _≤_ ≤-decTotalOrder-≈ : DecTotalOrder _ _ _
-
Added new definitions in
Data.Sum.Properties
:swap-↔ : (A ⊎ B) ↔ (B ⊎ A)
-
Added new proofs in
Data.Sum.Properties
:map-assocˡ : (f : A → C) (g : B → D) (h : C → F) → map (map f g) h ∘ assocˡ ≗ assocˡ ∘ map f (map g h) map-assocʳ : (f : A → C) (g : B → D) (h : C → F) → map f (map g h) ∘ assocʳ ≗ assocʳ ∘ map (map f g) h
-
Made
Map
public inData.Tree.AVL.IndexedMap
-
Added new definitions in
Data.Vec.Base
:truncate : m ≤ n → Vec A n → Vec A m pad : m ≤ n → A → Vec A m → Vec A n FoldrOp A B = ∀ {n} → A → B n → B (suc n) FoldlOp A B = ∀ {n} → B n → A → B (suc n) foldr′ : (A → B → B) → B → Vec A n → B foldl′ : (B → A → B) → B → Vec A n → B countᵇ : (A → Bool) → Vec A n → ℕ iterate : (A → A) → A → Vec A n diagonal : Vec (Vec A n) n → Vec A n DiagonalBind._>>=_ : Vec A n → (A → Vec B n) → Vec B n _ʳ++_ : Vec A m → Vec A n → Vec A (m + n) cast : .(eq : m ≡ n) → Vec A m → Vec A n
-
Added new instance in
Data.Vec.Effectful
:monad : RawMonad (λ (A : Set a) → Vec A n)
-
Added new proofs in
Data.Vec.Properties
:padRight-refl : padRight ≤-refl a xs ≡ xs padRight-replicate : replicate a ≡ padRight le a (replicate a) padRight-trans : padRight (≤-trans m≤n n≤p) a xs ≡ padRight n≤p a (padRight m≤n a xs) truncate-refl : truncate ≤-refl xs ≡ xs truncate-trans : truncate (≤-trans m≤n n≤p) xs ≡ truncate m≤n (truncate n≤p xs) truncate-padRight : truncate m≤n (padRight m≤n a xs) ≡ xs map-const : map (const x) xs ≡ replicate x map-⊛ : map f xs ⊛ map g xs ≡ map (f ˢ g) xs map-++ : map f (xs ++ ys) ≡ map f xs ++ map f ys map-is-foldr : map f ≗ foldr (Vec B) (λ x ys → f x ∷ ys) [] map-∷ʳ : map f (xs ∷ʳ x) ≡ (map f xs) ∷ʳ (f x) map-reverse : map f (reverse xs) ≡ reverse (map f xs) map-ʳ++ : map f (xs ʳ++ ys) ≡ map f xs ʳ++ map f ys map-insert : map f (insert xs i x) ≡ insert (map f xs) i (f x) toList-map : toList (map f xs) ≡ List.map f (toList xs) lookup-concat : lookup (concat xss) (combine i j) ≡ lookup (lookup xss i) j ⊛-is->>= : fs ⊛ xs ≡ fs >>= flip map xs lookup-⊛* : lookup (fs ⊛* xs) (combine i j) ≡ (lookup fs i $ lookup xs j) ++-is-foldr : xs ++ ys ≡ foldr ((Vec A) ∘ (_+ n)) _∷_ ys xs []≔-++-↑ʳ : (xs ++ ys) [ m ↑ʳ i ]≔ y ≡ xs ++ (ys [ i ]≔ y) unfold-ʳ++ : xs ʳ++ ys ≡ reverse xs ++ ys foldl-universal : ∀ (h : ∀ {c} (C : ℕ → Set c) (g : FoldlOp A C) (e : C zero) → ∀ {n} → Vec A n → C n) → (∀ ... → h C g e [] ≡ e) → (∀ ... → h C g e ∘ (x ∷_) ≗ h (C ∘ suc) g (g e x)) → h B f e ≗ foldl B f e foldl-fusion : h d ≡ e → (∀ ... → h (f b x) ≡ g (h b) x) → h ∘ foldl B f d ≗ foldl C g e foldl-∷ʳ : foldl B f e (ys ∷ʳ y) ≡ f (foldl B f e ys) y foldl-[] : foldl B f e [] ≡ e foldl-reverse : foldl B {n} f e ∘ reverse ≗ foldr B (flip f) e foldr-[] : foldr B f e [] ≡ e foldr-++ : foldr B f e (xs ++ ys) ≡ foldr (B ∘ (_+ n)) f (foldr B f e ys) xs foldr-∷ʳ : foldr B f e (ys ∷ʳ y) ≡ foldr (B ∘ suc) f (f y e) ys foldr-ʳ++ : foldr B f e (xs ʳ++ ys) ≡ foldl (B ∘ (_+ n)) (flip f) (foldr B f e ys) xs foldr-reverse : foldr B f e ∘ reverse ≗ foldl B (flip f) e ∷ʳ-injective : xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y ∷ʳ-injectiveˡ : xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys ∷ʳ-injectiveʳ : xs ∷ʳ x ≡ ys ∷ʳ y → x ≡ y unfold-∷ʳ : cast eq (xs ∷ʳ x) ≡ xs ++ [ x ] init-∷ʳ : init (xs ∷ʳ x) ≡ xs last-∷ʳ : last (xs ∷ʳ x) ≡ x cast-∷ʳ : cast eq (xs ∷ʳ x) ≡ (cast (cong pred eq) xs) ∷ʳ x ++-∷ʳ : cast eq ((xs ++ ys) ∷ʳ z) ≡ xs ++ (ys ∷ʳ z) reverse-∷ : reverse (x ∷ xs) ≡ reverse xs ∷ʳ x reverse-involutive : Involutive _≡_ reverse reverse-reverse : reverse xs ≡ ys → reverse ys ≡ xs reverse-injective : reverse xs ≡ reverse ys → xs ≡ ys transpose-replicate : transpose (replicate xs) ≡ map replicate xs toList-replicate : toList (replicate {n = n} a) ≡ List.replicate n a toList-++ : toList (xs ++ ys) ≡ toList xs List.++ toList ys cast-is-id : cast eq xs ≡ xs subst-is-cast : subst (Vec A) eq xs ≡ cast eq xs cast-trans : cast eq₂ (cast eq₁ xs) ≡ cast (trans eq₁ eq₂) xs map-cast : map f (cast eq xs) ≡ cast eq (map f xs) lookup-cast : lookup (cast eq xs) (Fin.cast eq i) ≡ lookup xs i lookup-cast₁ : lookup (cast eq xs) i ≡ lookup xs (Fin.cast (sym eq) i) lookup-cast₂ : lookup xs (Fin.cast eq i) ≡ lookup (cast (sym eq) xs) i cast-reverse : cast eq ∘ reverse ≗ reverse ∘ cast eq zipwith-++ : zipWith f (xs ++ ys) (xs' ++ ys') ≡ zipWith f xs xs' ++ zipWith f ys ys' ++-assoc : cast eq ((xs ++ ys) ++ zs) ≡ xs ++ (ys ++ zs) ++-identityʳ : cast eq (xs ++ []) ≡ xs init-reverse : init ∘ reverse ≗ reverse ∘ tail last-reverse : last ∘ reverse ≗ head reverse-++ : cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs toList-cast : toList (cast eq xs) ≡ toList xs cast-fromList : cast _ (fromList xs) ≡ fromList ys fromList-map : cast _ (fromList (List.map f xs)) ≡ map f (fromList xs) fromList-++ : cast _ (fromList (xs List.++ ys)) ≡ fromList xs ++ fromList ys
-
Added new proofs in
Data.Vec.Membership.Propositional.Properties
:index-∈-fromList⁺ : Any.index (∈-fromList⁺ v∈xs) ≡ indexₗ v∈xs
-
Added new proofs in
Data.Vec.Functional.Properties
:map-updateAt : f ∘ g ≗ h ∘ f → map f (updateAt i g xs) ≗ updateAt i h (map f xs)
-
Added new proofs in
Data.Vec.Relation.Binary.Lex.Strict
:xs≮[] : {xs : Vec A n} → ¬ xs < [] <-respectsˡ : IsPartialEquivalence _≈_ → _≺_ Respectsˡ _≈_ → ∀ {m n} → _Respectsˡ_ (_<_ {m} {n}) _≋_ <-respectsʳ : IsPartialEquivalence _≈_ → _≺_ Respectsʳ _≈_ → ∀ {m n} → _Respectsʳ_ (_<_ {m} {n}) _≋_ <-wellFounded : Transitive _≈_ → _≺_ Respectsʳ _≈_ → WellFounded _≺_ → ∀ {n} → WellFounded (_<_ {n})
* Added new functions in `Data.Vec.Relation.Unary.Any`:
lookup : Any P xs → A
* Added new functions in `Data.Vec.Relation.Unary.All`:
decide : Π[ P ∪ Q ] → Π[ All P ∪ Any Q ]
* Added vector associativity proof to `Data.Vec.Relation.Binary.Equality.Setoid`:
++-assoc : (xs ++ ys) ++ zs ≋ xs ++ (ys ++ zs)
* Added new functions in `Effect.Monad.State`:
runState : State s a → s → a × s evalState : State s a → s → a execState : State s a → s → s
* Added new proofs in `Function.Construct.Symmetry`:
bijective : Bijective ≈₁ ≈₂ f → Symmetric ≈₂ → Transitive ≈₂ → Congruent ≈₁ ≈₂ f → Bijective ≈₂ ≈₁ f⁻¹ isBijection : IsBijection ≈₁ ≈₂ f → Congruent ≈₂ ≈₁ f⁻¹ → IsBijection ≈₂ ≈₁ f⁻¹ isBijection-≡ : IsBijection ≈₁ ≡ f → IsBijection ≡ ≈₁ f⁻¹ bijection : Bijection R S → Congruent IB.Eq₂.≈ IB.Eq₁.≈ f⁻¹ → Bijection S R bijection-≡ : Bijection R (setoid B) → Bijection (setoid B) R sym-⤖ : A ⤖ B → B ⤖ A
* Added new operations in `Function.Strict`:
!|> : (a : A) → (∀ a → B a) → B a !|>′ : A → (A → B) → B
* Added new definition to the `Surjection` module in `Function.Related.Surjection`:
f⁻ = proj₁ ∘ surjective
* Added new operations in `IO`:
Colist.forM : Colist A → (A → IO B) → IO (Colist B) Colist.forM′ : Colist A → (A → IO B) → IO ⊤
List.forM : List A → (A → IO B) → IO (List B) List.forM′ : List A → (A → IO B) → IO ⊤
* Added new operations in `IO.Base`:
lift! : IO A → IO (Lift b A) <$ : B → IO A → IO B =<< : (A → IO B) → IO A → IO B << : IO B → IO A → IO B lift′ : Prim.IO ⊤ → IO {a} ⊤
when : Bool → IO ⊤ → IO ⊤ unless : Bool → IO ⊤ → IO ⊤
whenJust : Maybe A → (A → IO ⊤) → IO ⊤ untilJust : IO (Maybe A) → IO A untilRight : (A → IO (A ⊎ B)) → A → IO B
* Added new functions in `Reflection.AST.Term`:
stripPis : Term → List (String × Arg Type) × Term prependLams : List (String × Visibility) → Term → Term prependHLams : List String → Term → Term prependVLams : List String → Term → Term
* Added new operations in `Relation.Binary.Construct.Closure.Equivalence`:
fold : IsEquivalence ∼ → ⟶ ⇒ ∼ → EqClosure ⟶ ⇒ ∼ gfold : IsEquivalence ∼ → ⟶ =[ f ]⇒ ∼ → EqClosure ⟶ =[ f ]⇒ ∼ return : ⟶ ⇒ EqClosure ⟶ join : EqClosure (EqClosure ⟶) ⇒ EqClosure ⟶ _⋆ : ⟶₁ ⇒ EqClosure ⟶₂ → EqClosure ⟶₁ ⇒ EqClosure ⟶₂
* Added new operations in `Relation.Binary.Construct.Closure.Symmetric`:
fold : Symmetric ∼ → ⟶ ⇒ ∼ → SymClosure ⟶ ⇒ ∼ gfold : Symmetric ∼ → ⟶ =[ f ]⇒ ∼ → SymClosure ⟶ =[ f ]⇒ ∼ return : ⟶ ⇒ SymClosure ⟶ join : SymClosure (SymClosure ⟶) ⇒ SymClosure ⟶ _⋆ : ⟶₁ ⇒ SymClosure ⟶₂ → SymClosure ⟶₁ ⇒ SymClosure ⟶₂
* Added new proofs to `Relation.Binary.Lattice.Properties.{Join,Meet}Semilattice`:
```agda
isPosemigroup : IsPosemigroup _≈_ _≤_ _∨_
posemigroup : Posemigroup c ℓ₁ ℓ₂
≈-dec⇒≤-dec : Decidable _≈_ → Decidable _≤_
≈-dec⇒isDecPartialOrder : Decidable _≈_ → IsDecPartialOrder _≈_ _≤_
-
Added new proofs to
Relation.Binary.Lattice.Properties.Bounded{Join,Meet}Semilattice
:isCommutativePomonoid : IsCommutativePomonoid _≈_ _≤_ _∨_ ⊥ commutativePomonoid : CommutativePomonoid c ℓ₁ ℓ₂
-
Added new proofs to
Relation.Binary.Properties.Poset
:≤-dec⇒≈-dec : Decidable _≤_ → Decidable _≈_ ≤-dec⇒isDecPartialOrder : Decidable _≤_ → IsDecPartialOrder _≈_ _≤_
-
Added new proofs in
Relation.Binary.Properties.StrictPartialOrder
:>-strictPartialOrder : StrictPartialOrder s₁ s₂ s₃
-
Added new proofs in
Relation.Binary.PropositionalEquality.Properties
:subst-application′ : subst Q eq (f x p) ≡ f y (subst P eq p) sym-cong : sym (cong f p) ≡ cong f (sym p)
-
Added new proofs in
Relation.Binary.HeterogeneousEquality
:subst₂-removable : subst₂ _∼_ eq₁ eq₂ p ≅ p
-
Added new definitions in
Relation.Unary
:_≐_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ _≐′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ _∖_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
-
Added new proofs in
Relation.Unary.Properties
:⊆-reflexive : _≐_ ⇒ _⊆_ ⊆-antisym : Antisymmetric _≐_ _⊆_ ⊆-min : Min _⊆_ ∅ ⊆-max : Max _⊆_ U ⊂⇒⊆ : _⊂_ ⇒ _⊆_ ⊂-trans : Trans _⊂_ _⊂_ _⊂_ ⊂-⊆-trans : Trans _⊂_ _⊆_ _⊂_ ⊆-⊂-trans : Trans _⊆_ _⊂_ _⊂_ ⊂-respʳ-≐ : _⊂_ Respectsʳ _≐_ ⊂-respˡ-≐ : _⊂_ Respectsˡ _≐_ ⊂-resp-≐ : _⊂_ Respects₂ _≐_ ⊂-irrefl : Irreflexive _≐_ _⊂_ ⊂-antisym : Antisymmetric _≐_ _⊂_ ∅-⊆′ : (P : Pred A ℓ) → ∅ ⊆′ P ⊆′-U : (P : Pred A ℓ) → P ⊆′ U ⊆′-refl : Reflexive {A = Pred A ℓ} _⊆′_ ⊆′-reflexive : _≐′_ ⇒ _⊆′_ ⊆′-trans : Trans _⊆′_ _⊆′_ _⊆′_ ⊆′-antisym : Antisymmetric _≐′_ _⊆′_ ⊆′-min : Min _⊆′_ ∅ ⊆′-max : Max _⊆′_ U ⊂′⇒⊆′ : _⊂′_ ⇒ _⊆′_ ⊂′-trans : Trans _⊂′_ _⊂′_ _⊂′_ ⊂′-⊆′-trans : Trans _⊂′_ _⊆′_ _⊂′_ ⊆′-⊂′-trans : Trans _⊆′_ _⊂′_ _⊂′_ ⊂′-respʳ-≐′ : _⊂′_ Respectsʳ _≐′_ ⊂′-respˡ-≐′ : _⊂′_ Respectsˡ _≐′_ ⊂′-resp-≐′ : _⊂′_ Respects₂ _≐′_ ⊂′-irrefl : Irreflexive _≐′_ _⊂′_ ⊂′-antisym : Antisymmetric _≐′_ _⊂′_ ⊆⇒⊆′ : _⊆_ ⇒ _⊆′_ ⊆′⇒⊆ : _⊆′_ ⇒ _⊆_ ⊂⇒⊂′ : _⊂_ ⇒ _⊂′_ ⊂′⇒⊂ : _⊂′_ ⇒ _⊂_ ≐-refl : Reflexive _≐_ ≐-sym : Sym _≐_ _≐_ ≐-trans : Trans _≐_ _≐_ _≐_ ≐′-refl : Reflexive _≐′_ ≐′-sym : Sym _≐′_ _≐′_ ≐′-trans : Trans _≐′_ _≐′_ _≐′_ ≐⇒≐′ : _≐_ ⇒ _≐′_ ≐′⇒≐ : _≐′_ ⇒ _≐_ U-irrelevant : Irrelevant {A = A} U ∁-irrelevant : (P : Pred A ℓ) → Irrelevant (∁ P)
-
Generalised proofs in
Relation.Unary.Properties
:⊆-trans : Trans _⊆_ _⊆_ _⊆_
-
Added new proofs in
Relation.Binary.Properties.Setoid
:≈-isPreorder : IsPreorder _≈_ _≈_ ≈-isPartialOrder : IsPartialOrder _≈_ _≈_ ≈-preorder : Preorder a ℓ ℓ ≈-poset : Poset a ℓ ℓ
-
Added new definitions in
Relation.Binary.Definitions
:Cotransitive _#_ = ∀ {x y} → x # y → ∀ z → (x # z) ⊎ (z # y) Tight _≈_ _#_ = ∀ x y → (¬ x # y → x ≈ y) × (x ≈ y → ¬ x # y) Monotonic₁ _≤_ _⊑_ f = f Preserves _≤_ ⟶ _⊑_ Antitonic₁ _≤_ _⊑_ f = f Preserves (flip _≤_) ⟶ _⊑_ Monotonic₂ _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ _⊑_ ⟶ _≼_ MonotonicAntitonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ (flip _⊑_) ⟶ _≼_ AntitonicMonotonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ _⊑_ ⟶ _≼_ Antitonic₂ _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ (flip _⊑_) ⟶ _≼_ Adjoint _≤_ _⊑_ f g = ∀ {x y} → (f x ⊑ y → x ≤ g y) × (x ≤ g y → f x ⊑ y)
-
Added new definitions in
Relation.Binary.Bundles
:record ApartnessRelation c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
-
Added new definitions in
Relation.Binary.Structures
:record IsApartnessRelation (_#_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where
-
Added new proofs to
Relation.Binary.Consequences
:sym⇒¬-sym : Symmetric _∼_ → Symmetric _≁_ cotrans⇒¬-trans : Cotransitive _∼_ → Transitive _≁_ irrefl⇒¬-refl : Reflexive _≈_ → Irreflexive _≈_ _∼_ → Reflexive _≁_ mono₂⇒cong₂ : Symmetric ≈₁ → ≈₁ ⇒ ≤₁ → Antisymmetric ≈₂ ≤₂ → ∀ {f} → f Preserves₂ ≤₁ ⟶ ≤₁ ⟶ ≤₂ → f Preserves₂ ≈₁ ⟶ ≈₁ ⟶ ≈₂
-
Added new proofs to
Relation.Binary.Construct.Closure.Transitive
:accessible⁻ : ∀ {x} → Acc _∼⁺_ x → Acc _∼_ x wellFounded⁻ : WellFounded _∼⁺_ → WellFounded _∼_ accessible : ∀ {x} → Acc _∼_ x → Acc _∼⁺_ x
-
Added new operations in
Relation.Binary.PropositionalEquality.Properties
:J : (B : (y : A) → x ≡ y → Set b) (p : x ≡ y) → B x refl → B y p dcong : (p : x ≡ y) → subst B p (f x) ≡ f y dcong₂ : (p : x₁ ≡ x₂) → subst B p y₁ ≡ y₂ → f x₁ y₁ ≡ f x₂ y₂ dsubst₂ : (p : x₁ ≡ x₂) → subst B p y₁ ≡ y₂ → C x₁ y₁ → C x₂ y₂ ddcong₂ : (p : x₁ ≡ x₂) (q : subst B p y₁ ≡ y₂) → dsubst₂ C p q (f x₁ y₁) ≡ f x₂ y₂ isPartialOrder : IsPartialOrder _≡_ _≡_ poset : Set a → Poset _ _ _
-
Added new operations in
System.Exit
:isSuccess : ExitCode → Bool isFailure : ExitCode → Bool
-
Added new functions in
Codata.Guarded.Stream
:transpose : List (Stream A) → Stream (List A) transpose⁺ : List⁺ (Stream A) → Stream (List⁺ A) concat : Stream (List⁺ A) → Stream A
-
Added new proofs in
Codata.Guarded.Stream.Properties
:cong-concat : {ass bss : Stream (List⁺.List⁺ A)} → ass ≈ bss → concat ass ≈ concat bss map-concat : ∀ (f : A → B) ass → map f (concat ass) ≈ concat (map (List⁺.map f) ass) lookup-transpose : ∀ n (ass : List (Stream A)) → lookup n (transpose ass) ≡ List.map (lookup n) ass lookup-transpose⁺ : ∀ n (ass : List⁺ (Stream A)) → lookup n (transpose⁺ ass) ≡ List⁺.map (lookup n) ass
-
Added new corollaries in
Data.List.Membership.Setoid.Properties
:∈-++⁺∘++⁻ : ∀ {v} xs {ys} (p : v ∈ xs ++ ys) → [ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ (∈-++⁻ xs p) ≡ p ∈-++⁻∘++⁺ : ∀ {v} xs {ys} (p : v ∈ xs ⊎ v ∈ ys) → ∈-++⁻ xs ([ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ p) ≡ p ∈-++↔ : ∀ {v xs ys} → (v ∈ xs ⊎ v ∈ ys) ↔ v ∈ xs ++ ys ∈-++-comm : ∀ {v} xs ys → v ∈ xs ++ ys → v ∈ ys ++ xs ∈-++-comm∘++-comm : ∀ {v} xs {ys} (p : v ∈ xs ++ ys) → ∈-++-comm ys xs (∈-++-comm xs ys p) ≡ p ∈-++↔++ : ∀ {v} xs ys → v ∈ xs ++ ys ↔ v ∈ ys ++ xs
-
Exposed container combinator conversion functions from
Data.Container.Combinator.Properties
separate from their correctness proofs inData.Container.Combinator
:to-id : F.id A → ⟦ id ⟧ A from-id : ⟦ id ⟧ A → F.id A to-const : (A : Set s) → A → ⟦ const A ⟧ B from-const : (A : Set s) → ⟦ const A ⟧ B → A to-∘ : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ ⟧ (⟦ C₂ ⟧ A) → ⟦ C₁ ∘ C₂ ⟧ A from-∘ : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ ∘ C₂ ⟧ A → ⟦ C₁ ⟧ (⟦ C₂ ⟧ A) to-× : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A → ⟦ C₁ × C₂ ⟧ A from-× : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ × C₂ ⟧ A → ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A to-Π : (I : Set i) (Cᵢ : I → Container s p) → (∀ i → ⟦ Cᵢ i ⟧ A) → ⟦ Π I Cᵢ ⟧ A from-Π : (I : Set i) (Cᵢ : I → Container s p) → ⟦ Π I Cᵢ ⟧ A → ∀ i → ⟦ Cᵢ i ⟧ A to-⊎ : (C₁ : Container s₁ p) (C₂ : Container s₂ p) → ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A → ⟦ C₁ ⊎ C₂ ⟧ A from-⊎ : (C₁ : Container s₁ p) (C₂ : Container s₂ p) → ⟦ C₁ ⊎ C₂ ⟧ A → ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A to-Σ : (I : Set i) (C : I → Container s p) → (∃ λ i → ⟦ C i ⟧ A) → ⟦ Σ I C ⟧ A from-Σ : (I : Set i) (C : I → Container s p) → ⟦ Σ I C ⟧ A → ∃ λ i → ⟦ C i ⟧ A
-
Added a non-dependent version of
Function.Base.flip
due to an issue noted in Pull Request #1812:flip′ : (A → B → C) → (B → A → C)
-
Added new proofs to
Data.List.Properties
cartesianProductWith-zeroˡ : cartesianProductWith f [] ys ≡ [] cartesianProductWith-zeroʳ : cartesianProductWith f xs [] ≡ [] cartesianProductWith-distribʳ-++ : cartesianProductWith f (xs ++ ys) zs ≡ cartesianProductWith f xs zs ++ cartesianProductWith f ys zs foldr-map : foldr f x (map g xs) ≡ foldr (g -⟨ f ∣) x xs foldl-map : foldl f x (map g xs) ≡ foldl (∣ f ⟩- g) x xs
This is a full list of proofs that have changed form to use irrelevant instance arguments:
-
In
Data.Nat.Base
:≢-nonZero⁻¹ : ∀ {n} → .(NonZero n) → n ≢ 0 >-nonZero⁻¹ : ∀ {n} → .(NonZero n) → n > 0
-
In
Data.Nat.Properties
:*-cancelʳ-≡ : ∀ m n {o} → m * suc o ≡ n * suc o → m ≡ n *-cancelˡ-≡ : ∀ {m n} o → suc o * m ≡ suc o * n → m ≡ n *-cancelʳ-≤ : ∀ m n o → m * suc o ≤ n * suc o → m ≤ n *-cancelˡ-≤ : ∀ {m n} o → suc o * m ≤ suc o * n → m ≤ n *-monoˡ-< : ∀ n → (_* suc n) Preserves _<_ ⟶ _<_ *-monoʳ-< : ∀ n → (suc n *_) Preserves _<_ ⟶ _<_ m≤m*n : ∀ m {n} → 0 < n → m ≤ m * n m≤n*m : ∀ m {n} → 0 < n → m ≤ n * m m<m*n : ∀ {m n} → 0 < m → 1 < n → m < m * n suc[pred[n]]≡n : ∀ {n} → n ≢ 0 → suc (pred n) ≡ n
-
In
Data.Nat.Coprimality
:Bézout-coprime : ∀ {i j d} → Bézout.Identity (suc d) (i * suc d) (j * suc d) → Coprime i j
-
In
Data.Nat.Divisibility
m%n≡0⇒n∣m : ∀ m n → m % suc n ≡ 0 → suc n ∣ m n∣m⇒m%n≡0 : ∀ m n → suc n ∣ m → m % suc n ≡ 0 m%n≡0⇔n∣m : ∀ m n → m % suc n ≡ 0 ⇔ suc n ∣ m ∣⇒≤ : ∀ {m n} → m ∣ suc n → m ≤ suc n >⇒∤ : ∀ {m n} → m > suc n → m ∤ suc n *-cancelˡ-∣ : ∀ {i j} k → suc k * i ∣ suc k * j → i ∣ j
-
In
Data.Nat.DivMod
:m≡m%n+[m/n]*n : ∀ m n → m ≡ m % suc n + (m / suc n) * suc n m%n≡m∸m/n*n : ∀ m n → m % suc n ≡ m ∸ (m / suc n) * suc n n%n≡0 : ∀ n → suc n % suc n ≡ 0 m%n%n≡m%n : ∀ m n → m % suc n % suc n ≡ m % suc n [m+n]%n≡m%n : ∀ m n → (m + suc n) % suc n ≡ m % suc n [m+kn]%n≡m%n : ∀ m k n → (m + k * (suc n)) % suc n ≡ m % suc n m*n%n≡0 : ∀ m n → (m * suc n) % suc n ≡ 0 m%n<n : ∀ m n → m % suc n < suc n m%n≤m : ∀ m n → m % suc n ≤ m m≤n⇒m%n≡m : ∀ {m n} → m ≤ n → m % suc n ≡ m m/n<m : ∀ m n {≢0} → m ≥ 1 → n ≥ 2 → (m / n) {≢0} < m
-
In
Data.Nat.GCD
GCD-* : ∀ {m n d c} → GCD (m * suc c) (n * suc c) (d * suc c) → GCD m n d gcd[m,n]≤n : ∀ m n → gcd m (suc n) ≤ suc n
-
In
Data.Integer.Properties
:positive⁻¹ : ∀ {i} → Positive i → i > 0ℤ negative⁻¹ : ∀ {i} → Negative i → i < 0ℤ nonPositive⁻¹ : ∀ {i} → NonPositive i → i ≤ 0ℤ nonNegative⁻¹ : ∀ {i} → NonNegative i → i ≥ 0ℤ negative<positive : ∀ {i j} → Negative i → Positive j → i < j sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s sign-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂ -◃<+◃ : ∀ m n → Sign.- ◃ (suc m) < Sign.+ ◃ n m⊖1+n<m : ∀ m n → m ⊖ suc n < + m *-cancelʳ-≡ : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j *-cancelˡ-≡ : ∀ i j k → i ≢ + 0 → i * j ≡ i * k → j ≡ k *-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n ≤-steps : ∀ n → i ≤ j → i ≤ + n + j ≤-steps-neg : ∀ n → i ≤ j → i - + n ≤ j n≤m+n : ∀ n → i ≤ + n + i m≤m+n : ∀ n → i ≤ i + + n m-n≤m : ∀ i n → i - + n ≤ i *-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n *-cancelˡ-≤-pos : ∀ m j k → + suc m * j ≤ + suc m * k → j ≤ k *-cancelˡ-≤-neg : ∀ m {j k} → -[1+ m ] * j ≤ -[1+ m ] * k → j ≥ k *-cancelʳ-≤-neg : ∀ {n o} m → n * -[1+ m ] ≤ o * -[1+ m ] → n ≥ o *-cancelˡ-<-nonNeg : ∀ n → + n * i < + n * j → i < j *-cancelʳ-<-nonNeg : ∀ n → i * + n < j * + n → i < j *-monoʳ-≤-nonNeg : ∀ n → (_* + n) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonNeg : ∀ n → (+ n *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonPos : ∀ i → NonPositive i → (i *_) Preserves _≤_ ⟶ _≥_ *-monoʳ-≤-nonPos : ∀ i → NonPositive i → (_* i) Preserves _≤_ ⟶ _≥_ *-monoˡ-<-pos : ∀ n → (+[1+ n ] *_) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos : ∀ n → (_* +[1+ n ]) Preserves _<_ ⟶ _<_ *-monoˡ-<-neg : ∀ n → (-[1+ n ] *_) Preserves _<_ ⟶ _>_ *-monoʳ-<-neg : ∀ n → (_* -[1+ n ]) Preserves _<_ ⟶ _>_ *-cancelˡ-<-nonPos : ∀ n → NonPositive n → n * i < n * j → i > j *-cancelʳ-<-nonPos : ∀ n → NonPositive n → i * n < j * n → i > j *-distribˡ-⊓-nonNeg : ∀ m j k → + m * (j ⊓ k) ≡ (+ m * j) ⊓ (+ m * k) *-distribʳ-⊓-nonNeg : ∀ m j k → (j ⊓ k) * + m ≡ (j * + m) ⊓ (k * + m) *-distribˡ-⊓-nonPos : ∀ i → NonPositive i → ∀ j k → i * (j ⊓ k) ≡ (i * j) ⊔ (i * k) *-distribʳ-⊓-nonPos : ∀ i → NonPositive i → ∀ j k → (j ⊓ k) * i ≡ (j * i) ⊔ (k * i) *-distribˡ-⊔-nonNeg : ∀ m j k → + m * (j ⊔ k) ≡ (+ m * j) ⊔ (+ m * k) *-distribʳ-⊔-nonNeg : ∀ m j k → (j ⊔ k) * + m ≡ (j * + m) ⊔ (k * + m) *-distribˡ-⊔-nonPos : ∀ i → NonPositive i → ∀ j k → i * (j ⊔ k) ≡ (i * j) ⊓ (i * k) *-distribʳ-⊔-nonPos : ∀ i → NonPositive i → ∀ j k → (j ⊔ k) * i ≡ (j * i) ⊓ (k * i)
-
In
Data.Integer.Divisibility
:*-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
-
In
Data.Integer.Divisibility.Signed
:*-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
-
In
Data.Rational.Unnormalised.Properties
:positive⁻¹ : ∀ {q} → .(Positive q) → q > 0ℚᵘ nonNegative⁻¹ : ∀ {q} → .(NonNegative q) → q ≥ 0ℚᵘ negative⁻¹ : ∀ {q} → .(Negative q) → q < 0ℚᵘ nonPositive⁻¹ : ∀ {q} → .(NonPositive q) → q ≤ 0ℚᵘ positive⇒nonNegative : ∀ {p} → Positive p → NonNegative p negative⇒nonPositive : ∀ {p} → Negative p → NonPositive p negative<positive : ∀ {p q} → .(Negative p) → .(Positive q) → p < q nonNeg∧nonPos⇒0 : ∀ {p} → .(NonNegative p) → .(NonPositive p) → p ≃ 0ℚᵘ ≤-steps : ∀ {p q r} → NonNegative r → p ≤ q → p ≤ r + q p≤p+q : ∀ {p q} → NonNegative q → p ≤ p + q p≤q+p : ∀ {p} → NonNegative p → ∀ {q} → q ≤ p + q *-cancelʳ-≤-pos : ∀ {r} → Positive r → ∀ {p q} → p * r ≤ q * r → p ≤ q *-cancelˡ-≤-pos : ∀ {r} → Positive r → ∀ {p q} → r * p ≤ r * q → p ≤ q *-cancelʳ-≤-neg : ∀ r → Negative r → ∀ {p q} → p * r ≤ q * r → q ≤ p *-cancelˡ-≤-neg : ∀ r → Negative r → ∀ {p q} → r * p ≤ r * q → q ≤ p *-cancelˡ-<-nonNeg : ∀ {r} → NonNegative r → ∀ {p q} → r * p < r * q → p < q *-cancelʳ-<-nonNeg : ∀ {r} → NonNegative r → ∀ {p q} → p * r < q * r → p < q *-cancelˡ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → r * p < r * q → q < p *-cancelʳ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → p * r < q * r → q < p *-monoˡ-≤-nonNeg : ∀ {r} → NonNegative r → (_* r) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-nonNeg : ∀ {r} → NonNegative r → (r *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonPos : ∀ r → NonPositive r → (_* r) Preserves _≤_ ⟶ _≥_ *-monoʳ-≤-nonPos : ∀ r → NonPositive r → (r *_) Preserves _≤_ ⟶ _≥_ *-monoˡ-<-pos : ∀ {r} → Positive r → (_* r) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos : ∀ {r} → Positive r → (r *_) Preserves _<_ ⟶ _<_ *-monoˡ-<-neg : ∀ r → Negative r → (_* r) Preserves _<_ ⟶ _>_ *-monoʳ-<-neg : ∀ r → Negative r → (r *_) Preserves _<_ ⟶ _>_ pos⇒1/pos : ∀ p (p>0 : Positive p) → Positive ((1/ p) {{pos⇒≢0 p p>0}}) neg⇒1/neg : ∀ p (p<0 : Negative p) → Negative ((1/ p) {{neg⇒≢0 p p<0}}) *-distribʳ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊓ r) * p ≃ (q * p) ⊓ (r * p) *-distribˡ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊓ r) ≃ (p * q) ⊓ (p * r) *-distribˡ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊔ r) ≃ (p * q) ⊔ (p * r) *-distribʳ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊔ r) * p ≃ (q * p) ⊔ (r * p) *-distribˡ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊔ r) ≃ (p * q) ⊓ (p * r) *-distribʳ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊔ r) * p ≃ (q * p) ⊓ (r * p) *-distribˡ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊓ r) ≃ (p * q) ⊔ (p * r) *-distribʳ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊓ r) * p ≃ (q * p) ⊔ (r * p)
-
In
Data.Rational.Properties
:positive⁻¹ : Positive p → p > 0ℚ nonNegative⁻¹ : NonNegative p → p ≥ 0ℚ negative⁻¹ : Negative p → p < 0ℚ nonPositive⁻¹ : NonPositive p → p ≤ 0ℚ negative<positive : Negative p → Positive q → p < q nonNeg≢neg : ∀ p q → NonNegative p → Negative q → p ≢ q pos⇒nonNeg : ∀ p → Positive p → NonNegative p neg⇒nonPos : ∀ p → Negative p → NonPositive p nonNeg∧nonZero⇒pos : ∀ p → NonNegative p → NonZero p → Positive p *-cancelʳ-≤-pos : ∀ r → Positive r → ∀ {p q} → p * r ≤ q * r → p ≤ q *-cancelˡ-≤-pos : ∀ r → Positive r → ∀ {p q} → r * p ≤ r * q → p ≤ q *-cancelʳ-≤-neg : ∀ r → Negative r → ∀ {p q} → p * r ≤ q * r → p ≥ q *-cancelˡ-≤-neg : ∀ r → Negative r → ∀ {p q} → r * p ≤ r * q → p ≥ q *-cancelˡ-<-nonNeg : ∀ r → NonNegative r → ∀ {p q} → r * p < r * q → p < q *-cancelʳ-<-nonNeg : ∀ r → NonNegative r → ∀ {p q} → p * r < q * r → p < q *-cancelˡ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → r * p < r * q → p > q *-cancelʳ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → p * r < q * r → p > q *-monoʳ-≤-nonNeg : ∀ r → NonNegative r → (_* r) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonNeg : ∀ r → NonNegative r → (r *_) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-nonPos : ∀ r → NonPositive r → (_* r) Preserves _≤_ ⟶ _≥_ *-monoˡ-≤-nonPos : ∀ r → NonPositive r → (r *_) Preserves _≤_ ⟶ _≥_ *-monoˡ-<-pos : ∀ r → Positive r → (_* r) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos : ∀ r → Positive r → (r *_) Preserves _<_ ⟶ _<_ *-monoˡ-<-neg : ∀ r → Negative r → (_* r) Preserves _<_ ⟶ _>_ *-monoʳ-<-neg : ∀ r → Negative r → (r *_) Preserves _<_ ⟶ _>_ *-distribˡ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊓ (p * r) *-distribʳ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊓ (r * p) *-distribˡ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊔ (p * r) *-distribʳ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊔ (r * p) *-distribˡ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊓ (p * r) *-distribʳ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊓ (r * p) *-distribˡ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊔ (p * r) *-distribʳ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊔ (r * p) pos⇒1/pos : ∀ p (p>0 : Positive p) → Positive ((1/ p) {{pos⇒≢0 p p>0}}) neg⇒1/neg : ∀ p (p<0 : Negative p) → Negative ((1/ p) {{neg⇒≢0 p p<0}}) 1/pos⇒pos : ∀ p .{{_ : NonZero p}} → (1/p : Positive (1/ p)) → Positive p 1/neg⇒neg : ∀ p .{{_ : NonZero p}} → (1/p : Negative (1/ p)) → Negative p
-
In
Data.List.NonEmpty.Base
:drop+ : ℕ → List⁺ A → List⁺ A
When drop+ping more than the size of the length of the list, the last element remains.
-
Added new proofs in
Data.List.NonEmpty.Properties
:length-++⁺ : length (xs ++⁺ ys) ≡ length xs + length ys length-++⁺-tail : length (xs ++⁺ ys) ≡ suc (length xs + length (tail ys)) ++-++⁺ : (xs ++ ys) ++⁺ zs ≡ xs ++⁺ ys ++⁺ zs ++⁺-cancelˡ′ : xs ++⁺ zs ≡ ys ++⁺ zs′ → List.length xs ≡ List.length ys → zs ≡ zs′ ++⁺-cancelˡ : xs ++⁺ ys ≡ xs ++⁺ zs → ys ≡ zs drop+-++⁺ : drop+ (length xs) (xs ++⁺ ys) ≡ ys map-++⁺-commute : map f (xs ++⁺ ys) ≡ map f xs ++⁺ map f ys length-map : length (map f xs) ≡ length xs map-cong : f ≗ g → map f ≗ map g map-compose : map (g ∘ f) ≗ map g ∘ map f
-
Added new functions and proofs in
Data.Nat.GeneralisedArithmetic
:iterate : (A → A) → A → ℕ → A iterate-is-fold : ∀ (z : A) s m → fold z s m ≡ iterate s z m
-
Added new proofs to
Function.Properties.Inverse
:Inverse⇒Injection : Inverse S T → Injection S T ↔⇒↣ : A ↔ B → A ↣ B
-
Added a new isomorphism to
Data.Fin.Properties
:2↔Bool : Fin 2 ↔ Bool
-
Added new isomorphisms to
Data.Unit.Polymorphic.Properties
:⊤↔⊤* : ⊤ {ℓ} ↔ ⊤*
-
Added new isomorphisms to
Data.Vec.N-ary
:Vec↔N-ary : ∀ n → (Vec A n → B) ↔ N-ary n A B
-
Added new isomorphisms to
Data.Vec.Recursive
:lift↔ : ∀ n → A ↔ B → A ^ n ↔ B ^ n Fin[m^n]↔Fin[m]^n : ∀ m n → Fin (m ^ n) ↔ Fin m Vec.^ n
-
Added new functions to
Function.Properties.Inverse
:↔-refl : Reflexive _↔_ ↔-sym : Symmetric _↔_ ↔-trans : Transitive _↔_
-
Added new isomorphisms to
Function.Properties.Inverse
:↔-fun : A ↔ B → C ↔ D → (A → C) ↔ (B → D)
-
Added new function to
Data.Fin.Properties
i≤inject₁[j]⇒i≤1+j : i ≤ inject₁ j → i ≤ suc j
-
Added new function to
Data.Fin.Induction
<-weakInduction-startingFrom : P i → (∀ j → P (inject₁ j) → P (suc j)) → ∀ {j} → j ≥ i → P j
-
Added new module to
Data.Rational.Unnormalised.Properties
module ≃-Reasoning = SetoidReasoning ≃-setoid
-
Added new functions to
Data.Rational.Unnormalised.Properties
0≠1 : 0ℚᵘ ≠ 1ℚᵘ ≃-≠-irreflexive : Irreflexive _≃_ _≠_ ≠-symmetric : Symmetric _≠_ ≠-cotransitive : Cotransitive _≠_ ≠⇒invertible : p ≠ q → Invertible _≃_ 1ℚᵘ _*_ (p - q)
-
Added new structures to
Data.Rational.Unnormalised.Properties
+-*-isHeytingCommutativeRing : IsHeytingCommutativeRing _≃_ _≠_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ +-*-isHeytingField : IsHeytingField _≃_ _≠_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ
-
Added new bundles to
Data.Rational.Unnormalised.Properties
+-*-heytingCommutativeRing : HeytingCommutativeRing 0ℓ 0ℓ 0ℓ +-*-heytingField : HeytingField 0ℓ 0ℓ 0ℓ
-
Added new function to
Data.Vec.Relation.Binary.Pointwise.Inductive
cong-[_]≔ : Pointwise _∼_ xs ys → Pointwise _∼_ (xs [ i ]≔ p) (ys [ i ]≔ p)
-
Added new function to
Data.Vec.Relation.Binary.Equality.Setoid
map-[]≔ : map f (xs [ i ]≔ p) ≋ map f xs [ i ]≔ f p
-
Added new function to
Data.List.Relation.Binary.Permutation.Propositional.Properties
↭-reverse : (xs : List A) → reverse xs ↭ xs
-
Added new functions to
Algebra.Properties.CommutativeMonoid
invertibleˡ⇒invertibleʳ : LeftInvertible _≈_ 0# _+_ x → RightInvertible _≈_ 0# _+_ x invertibleʳ⇒invertibleˡ : RightInvertible _≈_ 0# _+_ x → LeftInvertible _≈_ 0# _+_ x invertibleˡ⇒invertible : LeftInvertible _≈_ 0# _+_ x → Invertible _≈_ 0# _+_ x invertibleʳ⇒invertible : RightInvertible _≈_ 0# _+_ x → Invertible _≈_ 0# _+_ x
-
Added new functions to
Algebra.Apartness.Bundles
invertibleˡ⇒# : LeftInvertible _≈_ 1# _*_ (x - y) → x # y invertibleʳ⇒# : RightInvertible _≈_ 1# _*_ (x - y) → x # y x#0y#0→xy#0 : x # 0# → y # 0# → x * y # 0# #-sym : Symmetric _#_ #-congʳ : x ≈ y → x # z → y # z #-congˡ : y ≈ z → x # y → x # z
-
Added new proofs to
Data.List.Relation.Binary.Sublist.Setoid.Properties
andData.List.Relation.Unary.Sorted.TotalOrder.Properties
.⊆-mergeˡ : ∀ xs ys → xs ⊆ merge _≤?_ xs ys ⊆-mergeʳ : ∀ xs ys → ys ⊆ merge _≤?_ xs ys
-
Added new proof to
Induction.WellFounded
Acc-resp-flip-≈ : _<_ Respectsʳ (flip _≈_) → (Acc _<_) Respects _≈_
-
Added new file
Relation.Binary.Reasoning.Base.Apartness
This is how to use it:
_ : a # d _ = begin-apartness a ≈⟨ a≈b ⟩ b #⟨ b#c ⟩ c ≈⟨ c≈d ⟩ d ∎