Skip to content

Latest commit

 

History

History
3424 lines (2923 loc) · 143 KB

CHANGELOG.md

File metadata and controls

3424 lines (2923 loc) · 143 KB

Version 2.0-dev

The library has been tested using Agda 2.6.3.

Highlights

  • A golden testing library in Test.Golden. This allows you to run a set of tests and make sure their output matches an expected golden value. The test runner has many options: filtering tests by name, dumping the list of failures to a file, timing the runs, coloured output, etc. Cf. the comments in Test.Golden and the standard library's own tests in tests/ for documentation on how to use the library.

  • A new tactic cong! available from Tactic.Cong which automatically infers the argument to cong for you via anti-unification.

  • Improved the solve tactic in Tactic.RingSolver to work in a much wider range of situations.

  • Added ⌊log₂_⌋ and ⌈log₂_⌉ on Natural Numbers.

  • A massive refactoring of the unindexed Functor/Applicative/Monad hierarchy and the MonadReader / MonadState type classes. These are now usable with instance arguments as demonstrated in the tests/monad examples.

Bug-fixes

  • The following operators were missing a fixity declaration, which has now been fixed -

    infixr  5 _∷_                                              (Codata.Guarded.Stream)
    infix   4 _[_]                                             (Codata.Guarded.Stream)
    infixr  5 _∷_                                              (Codata.Guarded.Stream.Relation.Binary.Pointwise)
    infix   4 _≈∞_                                             (Codata.Guarded.Stream.Relation.Binary.Pointwise)
    infixr  5 _∷_                                              (Codata.Musical.Colist)
    infix   4 _≈_                                              (Codata.Musical.Conat)
    infixr  5 _∷_                                              (Codata.Musical.Colist.Bisimilarity)
    infixr  5 _∷_                                              (Codata.Musical.Colist.Relation.Unary.All)
    infixr  5 _∷_                                              (Codata.Sized.Colist)
    infixr  5 _∷_                                              (Codata.Sized.Covec)
    infixr  5 _∷_                                              (Codata.Sized.Cowriter)
    infixl  1 _>>=_                                            (Codata.Sized.Cowriter)
    infixr  5 _∷_                                              (Codata.Sized.Stream)
    infixr  5 _∷_                                              (Codata.Sized.Colist.Bisimilarity)
    infix   4 _ℕ≤?_                                            (Codata.Sized.Conat.Properties)
    infixr  5 _∷_                                              (Codata.Sized.Covec.Bisimilarity)
    infixr  5 _∷_                                              (Codata.Sized.Cowriter.Bisimilarity)
    infixr  5 _∷_                                              (Codata.Sized.Stream.Bisimilarity)
    infixr  8 _⇒_ _⊸_                                          (Data.Container.Core)
    infixr -1 _<$>_ _<*>_                                      (Data.Container.FreeMonad)
    infixl  1 _>>=_                                            (Data.Container.FreeMonad)
    infix   5 _▷_                                              (Data.Container.Indexed)
    infix   4 _≈_                                              (Data.Float.Base)
    infixl  7 _⊓′_                                             (Data.Nat.Base)
    infixl  6 _⊔′_                                             (Data.Nat.Base)
    infixr  8 _^_                                              (Data.Nat.Base)
    infix   4 _!≢0 _!*_!≢0                                     (Data.Nat.Properties)
    infix   4 _≃?_                                             (Data.Rational.Unnormalised.Properties)
    infix   4 _≈ₖᵥ_                                            (Data.Tree.AVL.Map.Membership.Propositional)
    infix   4 _<_                                              (Induction.WellFounded)
    infix  -1 _$ⁿ_                                             (Data.Vec.N-ary)
    infix   4 _≋_                                              (Data.Vec.Functional.Relation.Binary.Equality.Setoid)
    infix   4 _≟_                                              (Reflection.AST.Definition)
    infix   4 _≡ᵇ_                                             (Reflection.AST.Literal)
    infix   4 _≈?_ _≟_ _≈_                                     (Reflection.AST.Meta)
    infix   4 _≈?_ _≟_ _≈_                                     (Reflection.AST.Name)
    infix   4 _≟-Telescope_                                    (Reflection.AST.Term)
    infix   4 _≟_                                              (Reflection.AST.Argument.Information)
    infix   4 _≟_                                              (Reflection.AST.Argument.Modality)
    infix   4 _≟_                                              (Reflection.AST.Argument.Quantity)
    infix   4 _≟_                                              (Reflection.AST.Argument.Relevance)
    infix   4 _≟_                                              (Reflection.AST.Argument.Visibility)
    infixr  8 _^_                                              (Function.Endomorphism.Propositional)
    infixr  8 _^_                                              (Function.Endomorphism.Setoid)
    infix   4 _≃_                                              (Function.HalfAdjointEquivalence)
    infix   4 _≈_ _≈ᵢ_ _≤_                                     (Function.Metric.Bundles)
    infixl  6 _∙_                                              (Function.Metric.Bundles)
    infix   4 _≈_                                              (Function.Metric.Nat.Bundles)
    infix   3 _←_ _↢_                                          (Function.Related)
    infix   4 _ℕ<_ _ℕ≤infinity _ℕ≤_                            (Codata.Sized.Conat)
    infix   6 _ℕ+_ _+ℕ_                                        (Codata.Sized.Conat)
    infixl  4 _+ _*                                            (Data.List.Kleene.Base)
    infixr  4 _++++_ _+++*_ _*+++_ _*++*_                      (Data.List.Kleene.Base)
    infix   4 _[_]* _[_]+                                      (Data.List.Kleene.Base)
    infix   4 _≢∈_                                             (Data.List.Membership.Propositional)
    infixr  5 _`∷_                                             (Data.List.Reflection)
    infix   4 _≡?_                                             (Data.List.Relation.Binary.Equality.DecPropositional)
    infixr  5 _++ᵖ_                                            (Data.List.Relation.Binary.Prefix.Heterogeneous)
    infixr  5 _++ˢ_                                            (Data.List.Relation.Binary.Suffix.Heterogeneous)
    infixr  5 _++_ _++[]                                       (Data.List.Relation.Ternary.Appending.Propositional)
    infixr  5 _∷=_                                             (Data.List.Relation.Unary.Any)
    infixr  5 _++_                                             (Data.List.Ternary.Appending)
    infixr  2 _×-⇔_ _×-↣_ _×-↞_ _×-↠_ _×-↔_ _×-cong_           (Data.Product.Function.NonDependent.Propositional)
    infixr  2 _×-⟶_                                           (Data.Product.Function.NonDependent.Setoid)
    infixr  2 _×-equivalence_ _×-injection_ _×-left-inverse_   (Data.Product.Function.NonDependent.Setoid)
    infixr  2 _×-surjection_ _×-inverse_                       (Data.Product.Function.NonDependent.Setoid)
    infixr  1 _⊎-⇔_ _⊎-↣_ _⊎-↞_ _⊎-↠_ _⊎-↔_ _⊎-cong_           (Data.Sum.Function.Propositional)
    infixr  1 _⊎-⟶_                                           (Data.Sum.Function.Setoid)
    infixr  1 _⊎-equivalence_ _⊎-injection_ _⊎-left-inverse_   (Data.Sum.Function.Setoid)
    infixr  1 _⊎-surjection_ _⊎-inverse_                       (Data.Sum.Function.Setoid)
    infix   8 _⁻¹                                              (Data.Parity.Base)
    infixr  5 _`∷_                                             (Data.Vec.Reflection)
    infixr  5 _∷=_                                             (Data.Vec.Membership.Setoid)
    infix   4 _≟H_ _≟N_                                        (Algebra.Solver.Ring)
    infix   4 _≈_                                              (Relation.Binary.Bundles)
    infixl  6 _∩_                                              (Relation.Binary.Construct.Intersection)
    infix   4 _<₋_                                             (Relation.Binary.Construct.Add.Infimum.Strict)
    infix   4 _≈∙_                                             (Relation.Binary.Construct.Add.Point.Equality)
    infix   4 _≤⁺_ _≤⊤⁺                                        (Relation.Binary.Construct.Add.Supremum.NonStrict)
    infixr  5 _∷ʳ_                                             (Relation.Binary.Construct.Closure.Transitive)
    infixr  5 _∷_                                              (Codata.Guarded.Stream.Relation.Unary.All)
    infixr  5 _∷_                                              (Foreign.Haskell.List.NonEmpty)
    infix   4 _≈_                                              (Function.Metric.Rational.Bundles)
    infixl  6 _ℕ+_                                             (Level.Literals)
    infixr  6 _∪_                                              (Relation.Binary.Construct.Union)
    infixl  6 _+ℤ_                                             (Relation.Binary.HeterogeneousEquality.Quotients.Examples)
    infix   4 _≉_ _≈ᵢ_ _≤ᵢ_                                    (Relation.Binary.Indexed.Homogeneous.Bundles)
    infixr  5 _∷ᴹ_ _∷⁻¹ᴹ_                                      (Text.Regex.Search)
    
  • In System.Exit, the ExitFailure constructor is now carrying an integer rather than a natural. The previous binding was incorrectly assuming that all exit codes where non-negative.

  • In /-monoˡ-≤ in Data.Nat.DivMod the parameter o was implicit but not inferrable. It has been changed to be explicit.

  • In +-distrib-/-∣ʳ in Data.Nat.DivMod the parameter m was implicit but not inferrable, while n is explicit but inferrable. They have been changed.

  • In Function.Definitions the definitions of Surjection, Inverseˡ, Inverseʳ were not being re-exported correctly and therefore had an unsolved meta-variable whenever this module was explicitly parameterised. This has been fixed.

  • Add module Algebra.Module that re-exports the contents of Algebra.Module.(Definitions/Structures/Bundles)

  • Various module-like bundles in Algebra.Module.Bundles were missing a fixity declaration for _*ᵣ_. This has been fixed.

  • In Algebra.Definitions.RawSemiring the record prime add p∤1 : p ∤ 1# to the field.

  • In Data.List.Relation.Ternary.Appending.Setoid we re-export specialised versions of the constructors using the setoid's carrier set. Prior to that, the constructor were re-exported in their full generality which would lead to unsolved meta variables at their use sites.

  • In Data.Container.FreeMonad, we give a direct definition of _⋆_ as an inductive type rather than encoding it as an instance of μ. This ensures Agda notices that C ⋆ X is strictly positive in X which in turn allows us to use the free monad when defining auxiliary (co)inductive types (cf. the Tap example in README.Data.Container.FreeMonad).

  • In Data.Maybe.Base the fixity declaration of _<∣>_ was missing. This has been fixed.

Non-backwards compatible changes

Removed deprecated names

  • All modules and names that were deprecated in v1.2 and before have been removed.

Moved Codata modules to Codata.Sized

  • Due to the change in Agda 2.6.2 where sized types are no longer compatible with the --safe flag, it has become clear that a third variant of codata will be needed using coinductive records. Therefore all existing modules in Codata which used sized types have been moved inside a new folder named Sized, e.g. Codata.Stream has become Codata.Sized.Stream.

Moved Category modules to Effect

  • As observed by Wen Kokke in Issue #1636, it no longer really makes sense to group the modules which correspond to the variety of concepts of (effectful) type constructor arising in functional programming (esp. in haskell) such as Monad, Applicative, Functor, etc, under Category.*, as this obstructs the importing of the agda-categories development into the Standard Library, and moreover needlessly restricts the applicability of categorical concepts to this (highly specific) mode of use. Correspondingly, client modules grouped under *.Categorical.* which exploit such structure for effectful programming have been renamed *.Effectful, with the originals being deprecated.

Improvements to pretty printing and regexes

  • In Text.Pretty, Doc is now a record rather than a type alias. This helps Agda reconstruct the width parameter when the module is opened without it being applied. In particular this allows users to write width-generic pretty printers and only pick a width when calling the renderer by using this import style:

    open import Text.Pretty using (Doc; render)
    --                      ^-- no width parameter for Doc & render
    open module Pretty {w} = Text.Pretty w hiding (Doc; render)
    --                 ^-- implicit width parameter for the combinators
    
    pretty : Doc w
    pretty = ? -- you can use the combinators here and there won't be any
               -- issues related to the fact that `w` cannot be reconstructed
               -- anymore
    
    main = do
      -- you can now use the same pretty with different widths:
      putStrLn $ render 40 pretty
      putStrLn $ render 80 pretty
    
  • In Text.Regex.Search the searchND function finding infix matches has been tweaked to make sure the returned solution is a local maximum in terms of length. It used to be that we would make the match start as late as possible and finish as early as possible. It's now the reverse.

    So [a-zA-Z]+.agdai? run on "the path _build/Main.agdai corresponds to" will return "Main.agdai" when it used to be happy to just return "n.agda".

Refactoring of algebraic lattice hierarchy

  • In order to improve modularity and consistency with Relation.Binary.Lattice, the structures & bundles for Semilattice, Lattice, DistributiveLattice & BooleanAlgebra have been moved out of the Algebra modules and into their own hierarchy in Algebra.Lattice.

  • All submodules, (e.g. Algebra.Properties.Semilattice or Algebra.Morphism.Lattice) have been moved to the corresponding place under Algebra.Lattice (e.g. Algebra.Lattice.Properties.Semilattice or Algebra.Lattice.Morphism.Lattice). See the Deprecated modules section below for full details.

  • Changed definition of IsDistributiveLattice and IsBooleanAlgebra so that they are no longer right-biased which hinders compositionality. More concretely, IsDistributiveLattice now has fields:

    ∨-distrib-∧ : ∨ DistributesOver ∧
    ∧-distrib-∨ : ∧ DistributesOver ∨

    instead of

    ∨-distribʳ-∧ : ∨ DistributesOverʳ ∧

    and IsBooleanAlgebra now has fields:

    ∨-complement : Inverse ⊤ ¬ ∨
    ∧-complement : Inverse ⊥ ¬ ∧
    

    instead of:

    ∨-complementʳ : RightInverse ⊤ ¬ ∨
    ∧-complementʳ : RightInverse ⊥ ¬ ∧
  • To allow construction of these structures via their old form, smart constructors have been added to a new module Algebra.Lattice.Structures.Biased, which are by re-exported automatically by Algebra.Lattice. For example, if before you wrote:

    ∧-∨-isDistributiveLattice = record
      { isLattice    = ∧-∨-isLattice
      ; ∨-distribʳ-∧ = ∨-distribʳ-∧
      }

    you can use the smart constructor isDistributiveLatticeʳʲᵐ to write:

    ∧-∨-isDistributiveLattice = isDistributiveLatticeʳʲᵐ (record
      { isLattice    = ∧-∨-isLattice
      ; ∨-distribʳ-∧ = ∨-distribʳ-∧
      })

    without having to prove full distributivity.

  • Added new IsBoundedSemilattice/BoundedSemilattice records.

  • Added new aliases Is(Meet/Join)(Bounded)Semilattice for Is(Bounded)Semilattice which can be used to indicate meet/join-ness of the original structures.

Removal of the old function hierarchy

  • The switch to the new function hierarchy is complete and the following definitions now use the new definitions instead of the old ones:
    • Algebra.Lattice.Properties.BooleanAlgebra
    • Algebra.Properties.CommutativeMonoid.Sum
    • Algebra.Properties.Lattice
      • replace-equality
    • Data.Fin.Properties
      • ∀-cons-⇔
      • ⊎⇔∃
    • Data.Fin.Subset.Properties
      • out⊆-⇔
      • in⊆in-⇔
      • out⊂in-⇔
      • out⊂out-⇔
      • in⊂in-⇔
      • x∈⁅y⁆⇔x≡y
      • ∩⇔×
      • ∪⇔⊎
      • ∃-Subset-[]-⇔
      • ∃-Subset-∷-⇔
    • Data.List.Countdown
      • empty
    • Data.List.Fresh.Relation.Unary.Any
      • ⊎⇔Any
    • Data.List.NonEmpty
    • Data.List.Relation.Binary.Lex
      • []<[]-⇔
      • ∷<∷-⇔
    • Data.List.Relation.Binary.Sublist.Heterogeneous.Properties
      • ∷⁻¹
      • ∷ʳ⁻¹
      • Sublist-[x]-bijection
    • Data.List.Relation.Binary.Sublist.Setoid.Properties
      • ∷⁻¹
      • ∷ʳ⁻¹
      • [x]⊆xs⤖x∈xs
    • Data.List.Relation.Unary.Grouped.Properties
    • Data.Maybe.Relation.Binary.Connected
      • just-equivalence
    • Data.Maybe.Relation.Binary.Pointwise
      • just-equivalence
    • Data.Maybe.Relation.Unary.All
      • just-equivalence
    • Data.Maybe.Relation.Unary.Any
      • just-equivalence
    • Data.Nat.Divisibility
      • m%n≡0⇔n∣m
    • Data.Nat.Properties
      • eq?
    • Data.Vec.N-ary
      • uncurry-∀ⁿ
      • uncurry-∃ⁿ
    • Data.Vec.Relation.Binary.Lex.Core
      • P⇔[]<[]
      • ∷<∷-⇔
    • Data.Vec.Relation.Binary.Pointwise.Extensional
      • equivalent
      • Pointwise-≡↔≡
    • Data.Vec.Relation.Binary.Pointwise.Inductive
      • Pointwise-≡↔≡
    • Effect.Monad.Partiality
      • correct
    • Relation.Binary.Construct.Closure.Reflexive.Properties
      • ⊎⇔Refl
    • Relation.Binary.Construct.Closure.Transitive
      • equivalent
    • Relation.Binary.Reflection
      • solve₁
    • Relation.Nullary.Decidable
      • map

Changes to the new function hierarchy

  • The names of the fields in Function.Bundles have been changed from f, g, cong₁ and cong₂ to to, from, to-cong, from-cong.

  • The module Function.Definitions no longer has two equalities as module arguments, as they did not interact as intended with the re-exports from Function.Definitions.(Core1/Core2). The latter have been removed and their definitions folded into Function.Definitions.

  • In Function.Definitions the types of Surjective, Injective and Surjective have been changed from:

    Surjective f = ∀ y → ∃ λ x → f x ≈₂ y
    Inverseˡ f g = ∀ y → f (g y) ≈₂ y
    Inverseʳ f g = ∀ x → g (f x) ≈₁ x
    

    to:

    Surjective f = ∀ y → ∃ λ x → ∀ {z} → z ≈₁ x → f z ≈₂ y
    Inverseˡ f g = ∀ {x y} → y ≈₁ g x → f y ≈₂ x
    Inverseʳ f g = ∀ {x y} → y ≈₂ f x → g y ≈₁ x
    

    This is for several reasons: i) the new definitions compose much more easily, ii) Agda can better infer the equalities used.

    To ease backwards compatibility:

    • the old definitions have been moved to the new names StrictlySurjective, StrictlyInverseˡ and StrictlyInverseʳ.
    • The records in Function.Structures and Function.Bundles export proofs of these under the names strictlySurjective, strictlyInverseˡ and strictlyInverseʳ,
    • Conversion functions have been added in both directions to Function.Consequences(.Propositional).

Proofs of non-zeroness/positivity/negativity as instance arguments

  • Many numeric operations in the library require their arguments to be non-zero, and various proofs require their arguments to be non-zero/positive/negative etc. As discussed on the mailing list, the previous way of constructing and passing round these proofs was extremely clunky and lead to messy and difficult to read code. We have therefore changed every occurrence where we need a proof of non-zeroness/positivity/etc. to take it as an irrelevant instance argument. See the mailing list for a fuller explanation of the motivation and implementation.

  • For example, whereas the type signature of division used to be:

    _/_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
    

    it is now:

    _/_ : (dividend divisor : ℕ) .{{_ : NonZero divisor}} → ℕ
    

    which means that as long as an instance of NonZero n is in scope then you can write m / n without having to explicitly provide a proof, as instance search will fill it in for you. The full list of such operations changed is as follows:

    • In Data.Nat.DivMod: _/_, _%_, _div_, _mod_
    • In Data.Nat.Pseudorandom.LCG: Generator
    • In Data.Integer.DivMod: _divℕ_, _div_, _modℕ_, _mod_
    • In Data.Rational: mkℚ+, normalize, _/_, 1/_
    • In Data.Rational.Unnormalised: _/_, 1/_, _÷_
  • At the moment, there are 4 different ways such instance arguments can be provided, listed in order of convenience and clarity:

    1. Automatic basic instances - the standard library provides instances based on the constructors of each numeric type in Data.X.Base. For example, Data.Nat.Base constrains an instance of NonZero (suc n) for any n and Data.Integer.Base contains an instance of NonNegative (+ n) for any n. Consequently, if the argument is of the required form, these instances will always be filled in by instance search automatically, e.g.
      0/n≡0 : 0 / suc n ≡ 0
      
    2. Take the instance as an argument - You can provide the instance argument as a parameter to your function and Agda's instance search will automatically use it in the correct place without you having to explicitly pass it, e.g.
      0/n≡0 : .{{_ : NonZero n}} → 0 / n ≡ 0
      
    3. Define the instance locally - You can define an instance argument in scope (e.g. in a where clause) and Agda's instance search will again find it automatically, e.g.
      instance
        n≢0 : NonZero n
        n≢0 = ...
      
      0/n≡0 : 0 / n ≡ 0
      
    4. Pass the instance argument explicitly - Finally, if all else fails you can pass the instance argument explicitly into the function using {{ }}, e.g.
      0/n≡0 : ∀ n (n≢0 : NonZero n) → ((0 / n) {{n≢0}}) ≡ 0
      
      Suitable constructors for NonZero/Positive etc. can be found in Data.X.Base.
  • A full list of proofs that have changed to use instance arguments is available at the end of this file. Notable changes to proofs are now discussed below.

  • Previously one of the hacks used in proofs was to explicitly refer to everything in the correct form, e.g. if the argument n had to be non-zero then you would refer to the argument as suc n everywhere instead of n, e.g.

    n/n≡1 : ∀ n → suc n / suc n ≡ 1
    

    This made the proofs extremely difficult to use if your term wasn't in the right form. After being updated to use instance arguments instead, the proof above becomes:

    n/n≡1 : ∀ n {{_ : NonZero n}} → n / n ≡ 1
    

    However, note that this means that if you passed in the value x to these proofs before, then you will now have to pass in suc x. The proofs for which the arguments have changed form in this way are highlighted in the list at the bottom of the file.

  • Finally, the definition of _≢0 has been removed from Data.Rational.Unnormalised.Base and the following proofs about it have been removed from Data.Rational.Unnormalised.Properties:

    p≄0⇒∣↥p∣≢0 : ∀ p → p ≠ 0ℚᵘ → ℤ.∣ (↥ p) ∣ ≢0
    ∣↥p∣≢0⇒p≄0 : ∀ p → ℤ.∣ (↥ p) ∣ ≢0 → p ≠ 0ℚᵘ
    

Change in reduction behaviour of rationals

  • Currently arithmetic expressions involving rationals (both normalised and unnormalised) undergo disastrous exponential normalisation. For example, p + q would often be normalised by Agda to (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q). While the normalised form of p + q + r + s + t + u + v would be ~700 lines long. This behaviour often chokes both type-checking and the display of the expressions in the IDE.

  • To avoid this expansion and make non-trivial reasoning about rationals actually feasible:

    1. the records ℚᵘ and have both had the no-eta-equality flag enabled
    2. definition of arithmetic operations have trivial pattern matching added to prevent them reducing, e.g.
      p + q = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
      has been changed to
      p@record{} + q@record{} = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
      
  • As a consequence of this, some proofs that relied on this reduction behaviour or on eta-equality may no longer go through. There are several ways to fix this:

    1. The principled way is to not rely on this reduction behaviour in the first place. The Properties files for rational numbers have been greatly expanded in v1.7 and v2.0, and we believe most proofs should be able to be built up from existing proofs contained within these files.
    2. Alternatively, annotating any rational arguments to a proof with either @record{} or @(mkℚ _ _ _) should restore the old reduction behaviour for any terms involving those parameters.
    3. Finally, if the above approaches are not viable then you may be forced to explicitly use cong combined with a lemma that proves the old reduction behaviour.

Change to the definition of LeftCancellative and RightCancellative

  • The definitions of the types for cancellativity in Algebra.Definitions previously made some of their arguments implicit. This was under the assumption that the operators were defined by pattern matching on the left argument so that Agda could always infer the argument on the RHS.

  • Although many of the operators defined in the library follow this convention, this is not always true and cannot be assumed in user's code.

  • Therefore the definitions have been changed as follows to make all their arguments explicit:

    • LeftCancellative _•_

      • From: ∀ x {y z} → (x • y) ≈ (x • z) → y ≈ z
      • To: ∀ x y z → (x • y) ≈ (x • z) → y ≈ z
    • RightCancellative _•_

      • From: ∀ {x} y z → (y • x) ≈ (z • x) → y ≈ z
      • To: ∀ x y z → (y • x) ≈ (z • x) → y ≈ z
    • AlmostLeftCancellative e _•_

      • From: ∀ {x} y z → ¬ x ≈ e → (x • y) ≈ (x • z) → y ≈ z
      • To: ∀ x y z → ¬ x ≈ e → (x • y) ≈ (x • z) → y ≈ z
    • AlmostRightCancellative e _•_

      • From: ∀ {x} y z → ¬ x ≈ e → (y • x) ≈ (z • x) → y ≈ z
      • To: ∀ x y z → ¬ x ≈ e → (y • x) ≈ (z • x) → y ≈ z
  • Correspondingly some proofs of the above types will need additional arguments passed explicitly. Instances can easily be fixed by adding additional underscores, e.g.

    • ∙-cancelˡ x to ∙-cancelˡ x _ _
    • ∙-cancelʳ y z to ∙-cancelʳ _ y z

Change in the definition of Prime

  • The definition of Prime in Data.Nat.Primality was:

    Prime 0             = ⊥
    Prime 1             = ⊥
    Prime (suc (suc n)) = (i : Fin n)  2 + toℕ i ∤ 2 + n

    which was very hard to reason about as not only did it involve conversion to and from the Fin type, it also required that the divisor was of the form 2 + toℕ i, which has exactly the same problem as the suc n hack described above used for non-zeroness.

  • To make it easier to use, reason about and read, the definition has been changed to:

    Prime 0 = ⊥
    Prime 1 = ⊥
    Prime n =  {d}  2 ≤ d  d < n  d ∤ n

Renaming of Reflection modules

  • Under the Reflection module, there were various impending name clashes between the core AST as exposed by Agda and the annotated AST defined in the library.

  • While the content of the modules remain the same, the modules themselves have therefore been renamed as follows:

    Reflection.Annotated              ↦ Reflection.AnnotatedAST
    Reflection.Annotated.Free         ↦ Reflection.AnnotatedAST.Free
    
    Reflection.Abstraction            ↦ Reflection.AST.Abstraction
    Reflection.Argument               ↦ Reflection.AST.Argument
    Reflection.Argument.Information   ↦ Reflection.AST.Argument.Information
    Reflection.Argument.Quantity      ↦ Reflection.AST.Argument.Quantity
    Reflection.Argument.Relevance     ↦ Reflection.AST.Argument.Relevance
    Reflection.Argument.Modality      ↦ Reflection.AST.Argument.Modality
    Reflection.Argument.Visibility    ↦ Reflection.AST.Argument.Visibility
    Reflection.DeBruijn               ↦ Reflection.AST.DeBruijn
    Reflection.Definition             ↦ Reflection.AST.Definition
    Reflection.Instances              ↦ Reflection.AST.Instances
    Reflection.Literal                ↦ Reflection.AST.Literal
    Reflection.Meta                   ↦ Reflection.AST.Meta
    Reflection.Name                   ↦ Reflection.AST.Name
    Reflection.Pattern                ↦ Reflection.AST.Pattern
    Reflection.Show                   ↦ Reflection.AST.Show
    Reflection.Traversal              ↦ Reflection.AST.Traversal
    Reflection.Universe               ↦ Reflection.AST.Universe
    
    Reflection.TypeChecking.Monad             ↦ Reflection.TCM
    Reflection.TypeChecking.Monad.Categorical ↦ Reflection.TCM.Categorical
    Reflection.TypeChecking.Monad.Format      ↦ Reflection.TCM.Format
    Reflection.TypeChecking.Monad.Syntax      ↦ Reflection.TCM.Instances
    Reflection.TypeChecking.Monad.Instances   ↦ Reflection.TCM.Syntax
    
  • A new module Reflection.AST that re-exports the contents of the submodules has been added.

Implementation of division and modulus for

  • The previous implementations of _divℕ_, _div_, _modℕ_, _mod_ in Data.Integer.DivMod internally converted to the unary Fin datatype resulting in poor performance. The implementation has been updated to use the corresponding operations from Data.Nat.DivMod which are efficiently implemented using the Haskell backend.

Strict functions

  • The module Strict has been deprecated in favour of Function.Strict and the definitions of strict application, _$!_ and _$!′_, have been moved from Function.Base to Function.Strict.

  • The contents of Function.Strict is now re-exported by Function.

Changes to ring structures

  • Several ring-like structures now have the multiplicative structure defined by its laws rather than as a substructure, to avoid repeated proofs that the underlying relation is an equivalence. These are:
    • IsNearSemiring
    • IsSemiringWithoutOne
    • IsSemiringWithoutAnnihilatingZero
    • IsRing
  • To aid with migration, structures matching the old style ones have been added to Algebra.Structures.Biased, with conversion functions:
    • IsNearSemiring* and isNearSemiring*
    • IsSemiringWithoutOne* and isSemiringWithoutOne*
    • IsSemiringWithoutAnnihilatingZero* and isSemiringWithoutAnnihilatingZero*
    • IsRing* and isRing*

Proof-irrelevant empty type

  • The definition of ⊥ has been changed to

    private
      data Empty : Set where
    
    : Set= Irrelevant Empty

    in order to make ⊥ proof irrelevant. Any two proofs of or of a negated statements are now judgmentally equal to each other.

  • Consequently we have modified the following definitions:

    • In Relation.Nullary.Decidable.Core, the type of dec-no has changed
      dec-no : (p? : Dec P)  ¬ P λ ¬p′  p? ≡ no ¬p′
        ↦ dec-no : (p? : Dec P) (¬p : ¬ P)  p? ≡ no ¬p
    • In Relation.Binary.PropositionalEquality, the type of ≢-≟-identity has changed
      ≢-≟-identity : x ≢ y λ ¬eq  x ≟ y ≡ no ¬eq
        ↦ ≢-≟-identity : (x≢y : x ≢ y)  x ≟ y ≡ no x≢y

Reorganisation of the Relation.Nullary hierarchy

  • It was very difficult to use the Relation.Nullary modules, as Relation.Nullary contained the basic definitions of negation, decidability etc., and the operations and proofs were smeared over Relation.Nullary.(Negation/Product/Sum/Implication etc.).

  • In order to fix this:

    • the definition of Dec and recompute have been moved to Relation.Nullary.Decidable.Core
    • the definition of Reflects has been moved to Relation.Nullary.Reflects
    • the definition of ¬_ has been moved to Relation.Nullary.Negation.Core
  • Backwards compatibility has been maintained, as Relation.Nullary still re-exports these publicly.

  • The modules:

    Relation.Nullary.Product
    Relation.Nullary.Sum
    Relation.Nullary.Implication
    

    have been deprecated and their contents moved to Relation.Nullary.(Negation/Reflects/Decidable) however all their contents is re-exported by Relation.Nullary which is the easiest way to access it now.

  • In order to facilitate this reorganisation the following breaking moves have occurred:

    • ¬? has been moved from Relation.Nullary.Negation.Core to Relation.Nullary.Decidable.Core
    • ¬-reflects has been moved from Relation.Nullary.Negation.Core to Relation.Nullary.Reflects.
    • decidable-stable, excluded-middle and ¬-drop-Dec have been moved from Relation.Nullary.Negation to Relation.Nullary.Decidable.
    • fromDec and toDec have been moved from Data.Sum.Base to Data.Sum.

Refactoring of the unindexed Functor/Applicative/Monad hierarchy

  • The unindexed versions are not defined in terms of the named versions anymore

  • The RawApplicative and RawMonad type classes have been relaxed so that the underlying functors do not need their domain and codomain to live at the same Set level. This is needed for level-increasing functors like IO : Set l → Set (suc l).

  • RawApplicative is now RawFunctor + pure + _<*>_ and RawMonad is now RawApplicative + _>>=_ and so return is not used anywhere anymore. This fixes the conflict with case_return_of (#356) This reorganisation means in particular that the functor/applicative of a monad are not computed using _>>=_. This may break proofs.

  • When F : Set f → Set f we moreover have a definable join/μ operator join : (M : RawMonad F) → F (F A) → F A.

  • We now have RawEmpty and RawChoice respectively packing empty : M A and (<|>) : M A → M A → M A. RawApplicativeZero, RawAlternative, RawMonadZero, RawMonadPlus are all defined in terms of these.

  • MonadT T now returns a MonadTd record that packs both a proof that the Monad M transformed by T is a monad and that we can lift a computation M A to a transformed computation T M A.

  • The monad transformer are not mere aliases anymore, they are record-wrapped which allows constraints such as MonadIO (StateT S (ReaderT R IO)) to be discharged by instance arguments.

  • The mtl-style type classes (MonadState, MonadReader) do not contain a proof that the underlying functor is a Monad anymore. This ensures we do not have conflicting Monad M instances from a pair of MonadState S M & MonadReader R M constraints.

  • MonadState S M is now defined in terms of

    gets : (S  A)  M A
    modify : (S  S)  M ⊤

    with get and put defined as derived notions. This is needed because MonadState S M does not pack a Monad M instance anymore and so we cannot define modify f as get >>= λ s → put (f s).

  • MonadWriter 𝕎 M is defined similarly:

    writer : W × A  M A
    listen : M A  M (W × A)
    pass   : M ((W  W) × A)  M A

    with tell defined as a derived notion. Note that 𝕎 is a RawMonoid, not a Set and W is the carrier of the monoid.

  • New modules:

    Algebra.Construct.Initial
    Algebra.Construct.Terminal
    Data.List.Effectful.Transformer
    Data.List.NonEmpty.Effectful.Transformer
    Data.Maybe.Effectful.Transformer
    Data.Sum.Effectful.Left.Transformer
    Data.Sum.Effectful.Right.Transformer
    Data.Vec.Effectful.Transformer
    Effect.Empty
    Effect.Choice
    Effect.Monad.Error.Transformer
    Effect.Monad.Identity
    Effect.Monad.IO
    Effect.Monad.IO.Instances
    Effect.Monad.Reader.Indexed
    Effect.Monad.Reader.Instances
    Effect.Monad.Reader.Transformer
    Effect.Monad.Reader.Transformer.Base
    Effect.Monad.State.Indexed
    Effect.Monad.State.Instances
    Effect.Monad.State.Transformer
    Effect.Monad.State.Transformer.Base
    Effect.Monad.Writer
    Effect.Monad.Writer.Indexed
    Effect.Monad.Writer.Instances
    Effect.Monad.Writer.Transformer
    Effect.Monad.Writer.Transformer.Base
    IO.Effectful
    IO.Instances
    

Other

  • In accordance with changes to the flags in Agda 2.6.3, all modules that previously used the --without-K flag now use the --cubical-compatible flag instead.

  • To avoid large indices that are by default no longer allowed in Agda 2.6.4, universe levels have been increased in the following definitions:

    • Data.Star.Decoration.DecoratedWith
    • Data.Star.Pointer.Pointer
    • Reflection.AnnotatedAST.Typeₐ
    • Reflection.AnnotatedAST.AnnotationFun
  • The first two arguments of m≡n⇒m-n≡0 (now i≡j⇒i-j≡0) in Data.Integer.Base have been made implicit.

  • The relations _≤_ _≥_ _<_ _>_ in Data.Fin.Base have been generalised so they can now relate Fin terms with different indices. Should be mostly backwards compatible, but very occasionally when proving properties about the orderings themselves the second index must be provided explicitly.

  • The argument xs in xs≮[] in Data.{List|Vec}.Relation.Binary.Lex.Strict introduced in PRs #1648 and #1672 has now been made implicit.

  • Issue #2075 (Johannes Waldmann): wellfoundedness of the lexicographic ordering on products, defined in Data.Product.Relation.Binary.Lex.Strict, no longer requires the assumption of symmetry for the first equality relation _≈₁_, leading to a new lemma Induction.WellFounded.Acc-resp-flip-≈, and refactoring of the previous proof Induction.WellFounded.Acc-resp-≈.

  • The operation SymClosure on relations in Relation.Binary.Construct.Closure.Symmetric has been reimplemented as a data type SymClosure _⟶_ a b that is parameterized by the input relation _⟶_ (as well as the elements a and b of the domain) so that _⟶_ can be inferred, which it could not from the previous implementation using the sum type a ⟶ b ⊎ b ⟶ a.

  • In Algebra.Morphism.Structures, IsNearSemiringHomomorphism, IsSemiringHomomorphism, and IsRingHomomorphism have been redesigned to build up from IsMonoidHomomorphism, IsNearSemiringHomomorphism, and IsSemiringHomomorphism respectively, adding a single property at each step. This means that they no longer need to have two separate proofs of IsRelHomomorphism. Similarly, IsLatticeHomomorphism is now built as IsRelHomomorphism along with proofs that _∧_ and _∨_ are homomorphic.

    Also, ⁻¹-homo in IsRingHomomorphism has been renamed to -‿homo.

  • Moved definition of _>>=_ under Data.Vec.Base to its submodule CartesianBind in order to keep another new definition of _>>=_, located in DiagonalBind which is also a submodule of Data.Vec.Base.

  • The functions split, flatten and flatten-split have been removed from Data.List.NonEmpty. In their place groupSeqs and ungroupSeqs have been added to Data.List.NonEmpty.Base which morally perform the same operations but without computing the accompanying proofs. The proofs can be found in Data.List.NonEmpty.Properties under the names groupSeqs-groups and ungroupSeqs and groupSeqs.

  • The constructors +0 and +[1+_] from Data.Integer.Base are no longer exported by Data.Rational.Base. You will have to open Data.Integer(.Base) directly to use them.

  • The names of the (in)equational reasoning combinators defined in the internal modules Data.Rational(.Unnormalised).Properties.≤-Reasoning have been renamed (issue #1437) to conform with the defined setoid equality _≃_ on Rationals:

    step-≈  ↦  step-≃
    step-≃˘ ↦  step-≃˘

    with corresponding associated syntax:

    _≈⟨_⟩_  ↦  _≃⟨_⟩_
    _≈˘⟨_⟩_ ↦  _≃˘⟨_⟩_

    NB. It is not possible to rename or deprecate syntax declarations, so Agda will only issue a "Could not parse the application begin ... when scope checking" warning if the old combinators are used.

  • The types of the proofs pos⇒1/pos/1/pos⇒pos and neg⇒1/neg/1/neg⇒neg in Data.Rational(.Unnormalised).Properties have been switched, as the previous naming scheme didn't correctly generalise to e.g. pos+pos⇒pos. For example the types of pos⇒1/pos/1/pos⇒pos were:

    pos⇒1/pos : ∀ p .{{_ : NonZero p}} .{{Positive (1/ p)}} → Positive p
    1/pos⇒pos : ∀ p .{{_ : Positive p}} → Positive (1/ p)
    

    but are now:

    pos⇒1/pos : ∀ p .{{_ : Positive p}} → Positive (1/ p)
    1/pos⇒pos : ∀ p .{{_ : NonZero p}} .{{Positive (1/ p)}} → Positive p
    
  • Opₗ and Opᵣ have moved from Algebra.Core to Algebra.Module.Core.

  • In Data.Nat.GeneralisedArithmetic, the s and z arguments to the following functions have been made explicit:

    • fold-+
    • fold-k
    • fold-*
    • fold-pull
  • In Data.Fin.Properties:

    • the i argument to opposite-suc has been made explicit;
    • pigeonhole has been strengthened: wlog, we return a proof that i < j rather than a mere i ≢ j.
  • In Data.Sum.Base the definitions fromDec and toDec have been moved to Data.Sum.

  • In Data.Vec.Base: the definitions init and last have been changed from the initLast view-derived implementation to direct recursive definitions.

  • In Codata.Guarded.Stream the following functions have been modified to have simpler definitions:

    • cycle
    • interleave⁺
    • cantor Furthermore, the direction of interleaving of cantor has changed. Precisely, suppose pair is the cantor pairing function, then lookup (pair i j) (cantor xss) according to the old definition corresponds to lookup (pair j i) (cantor xss) according to the new definition. For a concrete example see the one included at the end of the module.
  • Removed m/n/o≡m/[n*o] from Data.Nat.Divisibility and added a more general m/n/o≡m/[n*o] to Data.Nat.DivMod that doesn't require n * o ∣ m.

  • Updated lookup functions (and variants) to match the conventions adopted in the List module i.e. lookup takes its container first and the index (whose type may depend on the container value) second. This affects modules:

    Codata.Guarded.Stream
    Codata.Guarded.Stream.Relation.Binary.Pointwise
    Codata.Musical.Colist.Base
    Codata.Musical.Colist.Relation.Unary.Any.Properties
    Codata.Musical.Covec
    Codata.Musical.Stream
    Codata.Sized.Colist
    Codata.Sized.Covec
    Codata.Sized.Stream
    Data.Vec.Relation.Unary.All
    Data.Star.Environment
    Data.Star.Pointer
    Data.Star.Vec
    Data.Trie
    Data.Trie.NonEmpty
    Data.Tree.AVL
    Data.Tree.AVL.Indexed
    Data.Tree.AVL.Map
    Data.Tree.AVL.NonEmpty
    Data.Vec.Recursive
    Tactic.RingSolver
    Tactic.RingSolver.Core.NatSet
    
    • Moved & renamed from Data.Vec.Relation.Unary.All to Data.Vec.Relation.Unary.All.Properties:
      lookup ↦ lookup⁺
      tabulate ↦ lookup⁻
      
    • Renamed in Data.Vec.Relation.Unary.Linked.Properties and Codata.Guarded.Stream.Relation.Binary.Pointwise:
      lookup ↦ lookup⁺
      
    • Added the following new definitions to Data.Vec.Relation.Unary.All:
      lookupAny : All P xs → (i : Any Q xs) → (P ∩ Q) (Any.lookup i)
      lookupWith : ∀[ P ⇒ Q ⇒ R ] → All P xs → (i : Any Q xs) → R (Any.lookup i)
      lookup : All P xs → (∀ {x} → x ∈ₚ xs → P x)
      lookupₛ : P Respects _≈_ → All P xs → (∀ {x} → x ∈ xs → P x)
      
    • excluded-middle in Relation.Nullary.Decidable.Core has been renamed to ¬¬-excluded-middle.

Major improvements

Improvements to ring solver tactic

  • The ring solver tactic has been greatly improved. In particular:
    1. When the solver is used for concrete ring types, e.g. ℤ, the equality can now use all the ring operations defined natively for that type, rather than having to use the operations defined in AlmostCommutativeRing. For example previously you could not use Data.Integer.Base._*_ but instead had to use AlmostCommutativeRing._*_.
    2. The solver now supports use of the subtraction operator _-_ whenever it is defined immediately in terms of _+_ and -_. This is the case for Data.Integer and Data.Rational.

Moved _%_ and _/_ operators to Data.Nat.Base

  • Previously the division and modulus operators were defined in Data.Nat.DivMod which in turn meant that using them required importing Data.Nat.Properties which is a very heavy dependency.

  • To fix this, these operators have been moved to Data.Nat.Base. The properties for them still live in Data.Nat.DivMod (which also publicly re-exports them to provide backwards compatibility).

  • Beneficiaries of this change include Data.Rational.Unnormalised.Base whose dependencies are now significantly smaller.

Moved raw bundles from Data.X.Properties to Data.X.Base

  • As mentioned by MatthewDaggitt in Issue #1755, Raw bundles defined in Data.X.Properties should be defined in Data.X.Base as they don't require any properties.
    • Moved raw bundles From Data.Nat.Properties to Data.Nat.Base
    • Moved raw bundles From Data.Nat.Binary.Properties to Data.Nat.Binary.Base
    • Moved raw bundles From Data.Rational.Properties to Data.Rational.Base
    • Moved raw bundles From Data.Rational.Unnormalised.Properties to Data.Rational.Unnormalised.Base

Moved the definition of RawX from Algebra.X.Bundles to Algebra.X.Bundles.Raw

  • A new module Algebra.Bundles.Raw containing the definitions of the raw bundles can be imported at much lower cost from Data.X.Base. The following definitions have been moved:
    • RawMagma
    • RawMonoid
    • RawGroup
    • RawNearSemiring
    • RawSemiring
    • RawRingWithoutOne
    • RawRing
    • RawQuasigroup
    • RawLoop
  • A new module Algebra.Lattice.Bundles.Raw is also introduced.
    • RawLattice has been moved from Algebra.Lattice.Bundles to this new module.

Deprecated modules

Moving Relation.Binary.Construct.(Converse/Flip)

  • The following files have been moved:
    Relation.Binary.Construct.Converse               ↦ Relation.Binary.Construct.Flip.EqAndOrd
    Relation.Binary.Construct.Flip                   ↦ Relation.Binary.Construct.Flip.Ord

Deprecation of old function hierarchy

  • The module Function.Related has been deprecated in favour of Function.Related.Propositional whose code uses the new function hierarchy. This also opens up the possibility of a more general Function.Related.Setoid at a later date. Several of the names have been changed in this process to bring them into line with the camelcase naming convention used in the rest of the library:
    reverse-implication ↦ reverseImplication
    reverse-injection   ↦ reverseInjection
    left-inverse        ↦ leftInverse
    
    Symmetric-kind      ↦ SymmetricKind
    Forward-kind        ↦ ForwardKind
    Backward-kind       ↦ BackwardKind
    Equivalence-kind    ↦ EquivalenceKind

Moving Algebra.Lattice files

  • As discussed above the following files have been moved:
    Algebra.Properties.Semilattice               ↦ Algebra.Lattice.Properties.Semilattice
    Algebra.Properties.Lattice                   ↦ Algebra.Lattice.Properties.Lattice
    Algebra.Properties.DistributiveLattice       ↦ Algebra.Lattice.Properties.DistributiveLattice
    Algebra.Properties.BooleanAlgebra            ↦ Algebra.Lattice.Properties.BooleanAlgebra
    Algebra.Properties.BooleanAlgebra.Expression ↦ Algebra.Lattice.Properties.BooleanAlgebra.Expression
    Algebra.Morphism.LatticeMonomorphism         ↦ Algebra.Lattice.Morphism.LatticeMonomorphism

Moving *.Catgeorical.* files

  • As discussed above the following files have been moved:
    Codata.Sized.Colist.Categorical            ↦ Codata.Sized.Colist.Effectful
    Codata.Sized.Covec.Categorical             ↦ Codata.Sized.Covec.Effectful
    Codata.Sized.Delay.Categorical             ↦ Codata.Sized.Delay.Effectful
    Codata.Sized.Stream.Categorical            ↦ Codata.Sized.Stream.Effectful
    Data.List.Categorical                      ↦ Data.List.Effectful
    Data.List.Categorical.Transformer          ↦ Data.List.Effectful.Transformer
    Data.List.NonEmpty.Categorical             ↦ Data.List.NonEmpty.Effectful
    Data.List.NonEmpty.Categorical.Transformer ↦ Data.List.NonEmpty.Effectful.Transformer
    Data.Maybe.Categorical                     ↦ Data.Maybe.Effectful
    Data.Maybe.Categorical.Transformer         ↦ Data.Maybe.Effectful.Transformer
    Data.Product.Categorical.Examples          ↦ Data.Product.Effectful.Examples
    Data.Product.Categorical.Left              ↦ Data.Product.Effectful.Left
    Data.Product.Categorical.Left.Base         ↦ Data.Product.Effectful.Left.Base
    Data.Product.Categorical.Right             ↦ Data.Product.Effectful.Right
    Data.Product.Categorical.Right.Base        ↦ Data.Product.Effectful.Right.Base
    Data.Sum.Categorical.Examples              ↦ Data.Sum.Effectful.Examples
    Data.Sum.Categorical.Left                  ↦ Data.Sum.Effectful.Left
    Data.Sum.Categorical.Left.Transformer      ↦ Data.Sum.Effectful.Left.Transformer
    Data.Sum.Categorical.Right                 ↦ Data.Sum.Effectful.Right
    Data.Sum.Categorical.Right.Transformer     ↦ Data.Sum.Effectful.Right.Transformer
    Data.These.Categorical.Examples            ↦ Data.These.Effectful.Examples
    Data.These.Categorical.Left                ↦ Data.These.Effectful.Left
    Data.These.Categorical.Left.Base           ↦ Data.These.Effectful.Left.Base
    Data.These.Categorical.Right               ↦ Data.These.Effectful.Right
    Data.These.Categorical.Right.Base          ↦ Data.These.Effectful.Right.Base
    Data.Vec.Categorical                       ↦ Data.Vec.Effectful
    Data.Vec.Categorical.Transformer           ↦ Data.Vec.Effectful.Transformer
    Data.Vec.Recursive.Categorical             ↦ Data.Vec.Recursive.Effectful
    Function.Identity.Categorical              ↦ Function.Identity.Effectful
    IO.Categorical                             ↦ IO.Effectful
    Reflection.TCM.Categorical                 ↦ Reflection.TCM.Effectful

Moving Relation.Binary.Properties.XLattice files

  • The following files have been moved:
    Relation.Binary.Properties.BoundedJoinSemilattice.agda  ↦ Relation.Binary.Lattice.Properties.BoundedJoinSemilattice.agda
    Relation.Binary.Properties.BoundedLattice.agda          ↦ Relation.Binary.Lattice.Properties.BoundedLattice.agda
    Relation.Binary.Properties.BoundedMeetSemilattice.agda  ↦ Relation.Binary.Lattice.Properties.BoundedMeetSemilattice.agda
    Relation.Binary.Properties.DistributiveLattice.agda     ↦ Relation.Binary.Lattice.Properties.DistributiveLattice.agda
    Relation.Binary.Properties.JoinSemilattice.agda         ↦ Relation.Binary.Lattice.Properties.JoinSemilattice.agda
    Relation.Binary.Properties.Lattice.agda                 ↦ Relation.Binary.Lattice.Properties.Lattice.agda
    Relation.Binary.Properties.MeetSemilattice.agda         ↦ Relation.Binary.Lattice.Properties.MeetSemilattice.agda

Deprecation of Data.Nat.Properties.Core

  • The module Data.Nat.Properties.Core has been deprecated, and its one entry moved to Data.Nat.Properties

Deprecated names

  • In Algebra.Construct.Zero:

    rawMagma   ↦  Algebra.Construct.Terminal.rawMagma
    magma      ↦  Algebra.Construct.Terminal.magma
    semigroup  ↦  Algebra.Construct.Terminal.semigroup
    band       ↦  Algebra.Construct.Terminal.band
  • In Codata.Guarded.Stream.Properties:

    map-identity  ↦  map-id
    map-fusion    ↦  map-∘
    drop-fusion   ↦  drop-drop
  • In Codata.Sized.Colist.Properties:

    map-identity      ↦  map-id
    map-map-fusion    ↦  map-∘
    drop-drop-fusion  ↦  drop-drop
  • In Codata.Sized.Covec.Properties:

    map-identity   ↦  map-id
    map-map-fusion  ↦  map-∘
  • In Codata.Sized.Delay.Properties:

    map-identity      ↦  map-id
    map-map-fusion    ↦  map-∘
    map-unfold-fusion  ↦  map-unfold
  • In Codata.Sized.M.Properties:

    map-compose  ↦  map-∘
  • In Codata.Sized.Stream.Properties:

    map-identity   ↦  map-id
    map-map-fusion  ↦  map-∘
  • In Data.Bool.Properties (Issue #2046):

    push-function-into-if ↦ if-float
    
  • In Data.Fin.Base: two new, hopefully more memorable, names ↑ˡ ↑ʳ for the 'left', resp. 'right' injection of a Fin m into a 'larger' type, Fin (m + n), resp. Fin (n + m), with argument order to reflect the position of the Fin m argument.

    inject+  ↦  flip _↑ˡ_
    raise    ↦  _↑ʳ_
    

    Issue #1726: the relation _≺_ and its single constructor _≻toℕ_ have been deprecated in favour of their extensional equivalent _<_ but omitting the inversion principle which pattern matching on _≻toℕ_ would achieve; this instead is proxied by the property Data.Fin.Properties.toℕ<.

  • In Data.Fin.Induction:

    ≺-Rec
    ≺-wellFounded
    ≺-recBuilder
    ≺-rec
    

    As with Issue #1726 above: the deprecation of relation _≺_ means that these definitions associated with wf-recursion are deprecated in favour of their _<_ counterparts. But it's not quite sensible to say that these definitions should be renamed to anything, least of all those counterparts... the type confusion would be intolerable.

  • In Data.Fin.Properties:

    toℕ-raise        ↦ toℕ-↑ʳ
    toℕ-inject+      ↦ toℕ-↑ˡ
    splitAt-inject+  ↦ splitAt-↑ˡ m i n
    splitAt-raise    ↦ splitAt-↑ʳ
    Fin0↔⊥           ↦ 0↔⊥
    eq?              ↦ inj⇒≟
    

    Likewise under issue #1726: the properties ≺⇒<′ and <′⇒≺ have been deprecated in favour of their proxy counterparts <⇒<′ and <′⇒<.

  • In Data.Fin.Permutation.Components:

    reverse            ↦ Data.Fin.Base.opposite
    reverse-prop       ↦ Data.Fin.Properties.opposite-prop
    reverse-involutive ↦ Data.Fin.Properties.opposite-involutive
    reverse-suc        ↦ Data.Fin.Properties.opposite-suc
    
  • In Data.Integer.DivMod the operator names have been renamed to be consistent with those in Data.Nat.DivMod:

    _divℕ_  ↦ _/ℕ_
    _div_   ↦ _/_
    _modℕ_  ↦ _%ℕ_
    _mod_   ↦ _%_
    
  • In Data.Integer.Properties references to variables in names have been made consistent so that m, n always refer to naturals and i and j always refer to integers:

    ≤-steps        ↦  i≤j⇒i≤k+j
    ≤-step         ↦  i≤j⇒i≤1+j
    
    ≤-steps-neg    ↦  i≤j⇒i-k≤j
    ≤-step-neg     ↦  i≤j⇒pred[i]≤j
    
    n≮n            ↦  i≮i
    ∣n∣≡0⇒n≡0       ↦  ∣i∣≡0⇒i≡0
    ∣-n∣≡∣n∣         ↦  ∣-i∣≡∣i∣
    0≤n⇒+∣n∣≡n      ↦  0≤i⇒+∣i∣≡i
    +∣n∣≡n⇒0≤n      ↦  +∣i∣≡i⇒0≤i
    +∣n∣≡n⊎+∣n∣≡-n   ↦  +∣i∣≡i⊎+∣i∣≡-i
    ∣m+n∣≤∣m∣+∣n∣     ↦  ∣i+j∣≤∣i∣+∣j∣
    ∣m-n∣≤∣m∣+∣n∣     ↦  ∣i-j∣≤∣i∣+∣j∣
    signₙ◃∣n∣≡n     ↦  signᵢ◃∣i∣≡i
    ◃-≡            ↦  ◃-cong
    ∣m-n∣≡∣n-m∣      ↦  ∣i-j∣≡∣j-i∣
    m≡n⇒m-n≡0      ↦  i≡j⇒i-j≡0
    m-n≡0⇒m≡n      ↦  i-j≡0⇒i≡j
    m≤n⇒m-n≤0      ↦  i≤j⇒i-j≤0
    m-n≤0⇒m≤n      ↦  i-j≤0⇒i≤j
    m≤n⇒0≤n-m      ↦  i≤j⇒0≤j-i
    0≤n-m⇒m≤n      ↦  0≤i-j⇒j≤i
    n≤1+n          ↦  i≤suc[i]
    n≢1+n          ↦  i≢suc[i]
    m≤pred[n]⇒m<n  ↦  i≤pred[j]⇒i<j
    m<n⇒m≤pred[n]  ↦  i<j⇒i≤pred[j]
    -1*n≡-n        ↦  -1*i≡-i
    m*n≡0⇒m≡0∨n≡0  ↦  i*j≡0⇒i≡0∨j≡0
    ∣m*n∣≡∣m∣*∣n∣     ↦  ∣i*j∣≡∣i∣*∣j∣
    m≤m+n          ↦  i≤i+j
    n≤m+n          ↦  i≤j+i
    m-n≤m          ↦  i≤i-j
    
    +-pos-monoʳ-≤    ↦  +-monoʳ-≤
    +-neg-monoʳ-≤    ↦  +-monoʳ-≤
    *-monoʳ-≤-pos    ↦  *-monoʳ-≤-nonNeg
    *-monoˡ-≤-pos    ↦  *-monoˡ-≤-nonNeg
    *-monoʳ-≤-neg    ↦  *-monoʳ-≤-nonPos
    *-monoˡ-≤-neg    ↦  *-monoˡ-≤-nonPos
    *-cancelˡ-<-neg  ↦  *-cancelˡ-<-nonPos
    *-cancelʳ-<-neg  ↦  *-cancelʳ-<-nonPos
    
    ^-semigroup-morphism ↦ ^-isMagmaHomomorphism
    ^-monoid-morphism    ↦ ^-isMonoidHomomorphism
    
    pos-distrib-* ↦ pos-*
    pos-+-commute ↦ pos-+
    abs-*-commute ↦ abs-*
    
    +-isAbelianGroup ↦ +-0-isAbelianGroup
    
  • In Data.List.Properties:

    map-id₂         ↦  map-id-local
    map-cong₂       ↦  map-cong-local
    map-compose     ↦  map-∘
    
    map-++-commute       ↦  map-++
    sum-++-commute       ↦  sum-++
    reverse-map-commute  ↦  reverse-map
    reverse-++-commute   ↦  reverse-++
    
    zipWith-identityˡ  ↦  zipWith-zeroˡ
    zipWith-identityʳ  ↦  zipWith-zeroʳ
    
    ʳ++-++  ↦  ++-ʳ++
    
    take++drop ↦ take++drop≡id
  • In Data.List.NonEmpty.Properties:

    map-compose     ↦  map-∘
    
    map-++⁺-commute ↦  map-++⁺
  • In Data.List.Relation.Unary.All.Properties:

    updateAt-id-relative      ↦  updateAt-id-local
    updateAt-compose-relative ↦  updateAt-∘-local
    updateAt-compose          ↦  updateAt-∘
    updateAt-cong-relative    ↦  updateAt-cong-local
  • In Data.List.Zipper.Properties:

    toList-reverse-commute ↦  toList-reverse
    toList-ˡ++-commute     ↦  toList-ˡ++
    toList-++ʳ-commute     ↦  toList-++ʳ
    toList-map-commute    ↦  toList-map
    toList-foldr-commute  ↦  toList-foldr
  • In Data.Maybe.Properties:

    map-id₂     ↦  map-id-local
    map-cong₂   ↦  map-cong-local
    
    map-compose    ↦  map-∘
    
    map-<∣>-commute ↦  map-<∣>
    
  • In Data.List.Relation.Binary.Subset.Propositional.Properties:

    map-with-∈⁺  ↦  mapWith∈⁺
    
  • In Data.List.Relation.Unary.Any.Properties:

    map-with-∈⁺  ↦  mapWith∈⁺
    map-with-∈⁻  ↦  mapWith∈⁻
    map-with-∈↔  ↦  mapWith∈↔
    
  • In Data.Nat.Properties:

    suc[pred[n]]≡n  ↦  suc-pred
    ≤-step          ↦  m≤n⇒m≤1+n
    ≤-stepsˡ        ↦  m≤n⇒m≤o+n
    ≤-stepsʳ        ↦  m≤n⇒m≤n+o
    <-step          ↦  m<n⇒m<1+n
    
  • In Data.Rational.Unnormalised.Properties:

    ↥[p/q]≡p         ↦  ↥[n/d]≡n
    ↧[p/q]≡q         ↦  ↧[n/d]≡d
    *-monoˡ-≤-pos    ↦  *-monoˡ-≤-nonNeg
    *-monoʳ-≤-pos    ↦  *-monoʳ-≤-nonNeg
    ≤-steps          ↦  p≤q⇒p≤r+q
    *-monoˡ-≤-neg    ↦  *-monoˡ-≤-nonPos
    *-monoʳ-≤-neg    ↦  *-monoʳ-≤-nonPos
    *-cancelˡ-<-pos  ↦  *-cancelˡ-<-nonNeg
    *-cancelʳ-<-pos  ↦  *-cancelʳ-<-nonNeg
    
    positive⇒nonNegative  ↦ pos⇒nonNeg
    negative⇒nonPositive  ↦ neg⇒nonPos
    negative<positive     ↦ neg<pos
    
  • In Data.Rational.Base:

    +-rawMonoid ↦ +-0-rawMonoid
    *-rawMonoid ↦ *-1-rawMonoid
    
  • In Data.Rational.Properties:

    *-monoʳ-≤-neg    ↦  *-monoʳ-≤-nonPos
    *-monoˡ-≤-neg    ↦  *-monoˡ-≤-nonPos
    *-monoʳ-≤-pos    ↦  *-monoʳ-≤-nonNeg
    *-monoˡ-≤-pos    ↦  *-monoˡ-≤-nonNeg
    *-cancelˡ-<-pos  ↦  *-cancelˡ-<-nonNeg
    *-cancelʳ-<-pos  ↦  *-cancelʳ-<-nonNeg
    *-cancelˡ-<-neg  ↦  *-cancelˡ-<-nonPos
    *-cancelʳ-<-neg  ↦  *-cancelʳ-<-nonPos
    
    negative<positive     ↦ neg<pos
    
  • In Data.Rational.Unnormalised.Base:

    +-rawMonoid ↦ +-0-rawMonoid
    *-rawMonoid ↦ *-1-rawMonoid
    
  • In Data.Sum.Properties:

    [,]-∘-distr      ↦  [,]-∘
    [,]-map-commute  ↦  [,]-map
    map-commute      ↦  map-map
    map₁₂-commute    ↦  map₁₂-map₂₁
  • In Data.Tree.AVL:

    _∈?_ ↦ member
    
  • In Data.Tree.AVL.IndexedMap:

    _∈?_ ↦ member
    
  • In Data.Tree.AVL.Map:

    _∈?_ ↦ member
    
  • In Data.Tree.AVL.Sets:

    _∈?_ ↦ member
    
  • In Data.Tree.Binary.Zipper.Properties:

    toTree-#nodes-commute   ↦  toTree-#nodes
    toTree-#leaves-commute  ↦  toTree-#leaves
    toTree-map-commute      ↦  toTree-map
    toTree-foldr-commute    ↦  toTree-foldr
    toTree-⟪⟫ˡ-commute      ↦  toTree--⟪⟫ˡ
    toTree-⟪⟫ʳ-commute      ↦  toTree-⟪⟫ʳ
    
  • In Data.Tree.Rose.Properties:

    map-compose     ↦  map-∘
  • In Data.Vec.Properties:

    take-distr-zipWith ↦  take-zipWith
    take-distr-map     ↦  take-map
    drop-distr-zipWith ↦  drop-zipWith
    drop-distr-map     ↦  drop-map
    
    updateAt-id-relative      ↦  updateAt-id-local
    updateAt-compose-relative ↦  updateAt-∘-local
    updateAt-compose          ↦  updateAt-∘
    updateAt-cong-relative    ↦  updateAt-cong-local
    
    []%=-compose    ↦  []%=-∘
    
    []≔-++-inject+  ↦ []≔-++-↑ˡ
    []≔-++-raise    ↦ []≔-++-↑ʳ
    idIsFold        ↦ id-is-foldr
    sum-++-commute  ↦ sum-++
    
    take-drop-id ↦ take++drop≡id
    

    and the type of the proof zipWith-comm has been generalised from:

    zipWith-comm : ∀ {f : A → A → B} (comm : ∀ x y → f x y ≡ f y x) (xs ys : Vec A n) → zipWith f xs ys ≡ zipWith f ys xs
    

    to

    zipWith-comm : ∀ {f : A → B → C} {g : B → A → C}  (comm : ∀ x y → f x y ≡ g y x) (xs : Vec A n) ys → zipWith f xs ys ≡ zipWith g ys xs
    
  • In Data.Vec.Functional.Properties:

    updateAt-id-relative      ↦  updateAt-id-local
    updateAt-compose-relative ↦  updateAt-∘-local
    updateAt-compose          ↦  updateAt-∘
    updateAt-cong-relative    ↦  updateAt-cong-local
    
    map-updateAt              ↦  map-updateAt-local
    

    NB. This last one is complicated by the addition of a 'global' property map-updateAt

  • In Data.Vec.Recursive.Properties:

    append-cons-commute  ↦  append-cons
    
  • In Data.Vec.Relation.Binary.Equality.Setoid:

    map-++-commute ↦  map-++
  • In Function.Construct.Composition:

    _∘-⟶_   ↦   _⟶-∘_
    _∘-↣_   ↦   _↣-∘_
    _∘-↠_   ↦   _↠-∘_
    _∘-⤖_  ↦   _⤖-∘_
    _∘-⇔_   ↦   _⇔-∘_
    _∘-↩_   ↦   _↩-∘_
    _∘-↪_   ↦   _↪-∘_
    _∘-↔_   ↦   _↔-∘_
    
    • In Function.Construct.Identity:
    id-⟶   ↦   ⟶-id
    id-↣   ↦   ↣-id
    id-↠   ↦   ↠-id
    id-⤖  ↦   ⤖-id
    id-⇔   ↦   ⇔-id
    id-↩   ↦   ↩-id
    id-↪   ↦   ↪-id
    id-↔   ↦   ↔-id
    
  • In Function.Construct.Symmetry:

    sym-⤖   ↦   ⤖-sym
    sym-⇔   ↦   ⇔-sym
    sym-↩   ↦   ↩-sym
    sym-↪   ↦   ↪-sym
    sym-↔   ↦   ↔-sym
    
  • In Foreign.Haskell.Either and Foreign.Haskell.Pair:

    toForeign   ↦ Foreign.Haskell.Coerce.coerce
    fromForeign ↦ Foreign.Haskell.Coerce.coerce
    
  • In Relation.Binary.Properties.Preorder:

    invIsPreorder ↦ converse-isPreorder
    invPreorder   ↦ converse-preorder
    

Renamed Data.Erased to Data.Irrelevant

  • This fixes the fact we had picked the wrong name originally. The erased modality corresponds to @0 whereas the irrelevance one corresponds to ..

Deprecated Relation.Binary.PropositionalEquality.inspect

in favour of `with ... in ...` syntax (issue #1580; PRs #1630, #1930)
  • In Relation.Binary.PropositionalEquality both the record type Reveal_·_is_ and its principal mode of use, inspect, have been deprecated in favour of the new with ... in ... syntax. See the documentation of with-abstraction equality

New modules

  • Algebraic structures when freely adding an identity element:

    Algebra.Construct.Add.Identity
    
  • Operations for module-like algebraic structures:

    Algebra.Module.Core
    
  • Constructive algebraic structures with apartness relations:

    Algebra.Apartness
    Algebra.Apartness.Bundles
    Algebra.Apartness.Structures
    Algebra.Apartness.Properties.CommutativeHeytingAlgebra
    Relation.Binary.Properties.ApartnessRelation
    
  • Algebraic structures obtained by flipping their binary operations:

    Algebra.Construct.Flip.Op
    
  • Morphisms between module-like algebraic structures:

    Algebra.Module.Morphism.Construct.Composition
    Algebra.Module.Morphism.Construct.Identity
    Algebra.Module.Morphism.Definitions
    Algebra.Module.Morphism.Structures
    Algebra.Module.Properties
    
  • Identity morphisms and composition of morphisms between algebraic structures:

    Algebra.Morphism.Construct.Composition
    Algebra.Morphism.Construct.Identity
    
  • Ordered algebraic structures (pomonoids, posemigroups, etc.)

    Algebra.Ordered
    Algebra.Ordered.Bundles
    Algebra.Ordered.Structures
    
  • 'Optimised' tail-recursive exponentiation properties:

    Algebra.Properties.Semiring.Exp.TailRecursiveOptimised
    
  • A definition of infinite streams using coinductive records:

    Codata.Guarded.Stream
    Codata.Guarded.Stream.Properties
    Codata.Guarded.Stream.Relation.Binary.Pointwise
    Codata.Guarded.Stream.Relation.Unary.All
    Codata.Guarded.Stream.Relation.Unary.Any
    
  • A small library for function arguments with default values:

    Data.Default
    
  • A small library for a non-empty fresh list:

    Data.List.Fresh.NonEmpty
    
  • A small library defining a structurally inductive view of lists:

    Data.List.Relation.Unary.Sufficient
    
  • Combinations and permutations for ℕ.

    Data.Nat.Combinatorics
    Data.Nat.Combinatorics.Base
    Data.Nat.Combinatorics.Spec
    
  • A small library defining parity and its algebra:

    Data.Parity
    Data.Parity.Base
    Data.Parity.Instances
    Data.Parity.Properties
    
  • New base module for Data.Product containing only the basic definitions.

    Data.Product.Base
    
  • Reflection utilities for some specific types:

    Data.List.Reflection
    Data.Vec.Reflection
    
  • The All predicate over non-empty lists:

    Data.List.NonEmpty.Relation.Unary.All
    
  • Show module for unnormalised rationals:

    Data.Rational.Unnormalised.Show
    
  • Membership relations for maps and sets

    Data.Tree.AVL.Map.Membership.Propositional
    Data.Tree.AVL.Map.Membership.Propositional.Properties
    Data.Tree.AVL.Sets.Membership
    Data.Tree.AVL.Sets.Membership.Properties
    
  • Properties of bijections:

    Function.Consequences
    Function.Properties.Bijection
    Function.Properties.RightInverse
    Function.Properties.Surjection
    
  • In order to improve modularity, the contents of Relation.Binary.Lattice has been split out into the standard:

    Relation.Binary.Lattice.Definitions
    Relation.Binary.Lattice.Structures
    Relation.Binary.Lattice.Bundles
    

    All contents is re-exported by Relation.Binary.Lattice as before.

  • Algebraic properties of _∩_ and _∪_ for predicates

    Relation.Unary.Algebra
    
  • Both versions of equality on predications are equivalences

    Relation.Unary.Relation.Binary.Equality
    
  • The subset relations on predicates define an order

    Relation.Unary.Relation.Binary.Subset
    
  • Polymorphic versions of some unary relations and their properties

    Relation.Unary.Polymorphic
    Relation.Unary.Polymorphic.Properties
    
  • Alpha equality over reflected terms

    Reflection.AST.AlphaEquality
    
  • cong! tactic for deriving arguments to cong

    Tactic.Cong
    
  • Various system types and primitives:

    System.Clock.Primitive
    System.Clock
    System.Console.ANSI
    System.Directory.Primitive
    System.Directory
    System.FilePath.Posix.Primitive
    System.FilePath.Posix
    System.Process.Primitive
    System.Process
    
  • A golden testing library with test pools, an options parser, a runner:

    Test.Golden
    
  • New interfaces for using Haskell datatypes:

    Foreign.Haskell.List.NonEmpty
    
  • Added new module Algebra.Properties.RingWithoutOne:

    -‿distribˡ-* : ∀ x y → - (x * y) ≈ - x * y
    -‿distribʳ-* : ∀ x y → - (x * y) ≈ x * - y
    
  • An implementation of M-types with --guardedness flag:

    Codata.Guarded.M
    
  • Port of Linked to Vec:

    Data.Vec.Relation.Unary.Linked
    Data.Vec.Relation.Unary.Linked.Properties
    
  • Added Logarithm base 2 on Natural Numbers:

    Data.Nat.Logarithm.Core
    Data.Nat.Logarithm
    
  • Proofs of some axioms of linearity:

    Algebra.Module.Morphism.ModuleHomomorphism
    Algebra.Module.Properties
    
  • Properties of MoufangLoop

    Algebra.Properties.MoufangLoop
    
  • Properties of Quasigroup

    Algebra.Properties.Quasigroup
    
  • Properties of MiddleBolLoop

    Algebra.Properties.MiddleBolLoop
    
  • Properties of Loop

    Algebra.Properties.Loop
    
  • Some n-ary functions manipulating lists

    Data.List.Nary.NonDependent
    
  • Properties of KleeneAlgebra

    Algebra.Properties.KleeneAlgebra
    
  • Relations on indexed sets

    Function.Indexed.Bundles
    

Additions to existing modules

  • Added new proof to Data.Maybe.Properties

      <∣>-idem : Idempotent _<∣>_
  • The module Algebra now publicly re-exports the contents of Algebra.Structures.Biased.

  • Added new definitions to Algebra.Bundles:

    record UnitalMagma c ℓ : Set (suc (c ⊔ ℓ))
    record InvertibleMagma c ℓ : Set (suc (c ⊔ ℓ))
    record InvertibleUnitalMagma c ℓ : Set (suc (c ⊔ ℓ))
    record RawQuasiGroup c ℓ : Set (suc (c ⊔ ℓ))
    record Quasigroup c ℓ : Set (suc (c ⊔ ℓ))
    record RawLoop  c ℓ : Set (suc (c ⊔ ℓ))
    record Loop  c ℓ : Set (suc (c ⊔ ℓ))
    record RingWithoutOne c ℓ : Set (suc (c ⊔ ℓ))
    record IdempotentSemiring c ℓ : Set (suc (c ⊔ ℓ))
    record KleeneAlgebra c ℓ : Set (suc (c ⊔ ℓ))
    record RawRingWithoutOne c ℓ : Set (suc (c ⊔ ℓ))
    record Quasiring c ℓ : Set (suc (c ⊔ ℓ)) where
    record Nearring c ℓ : Set (suc (c ⊔ ℓ)) where
    record IdempotentMagma c ℓ : Set (suc (c ⊔ ℓ))
    record AlternateMagma c ℓ : Set (suc (c ⊔ ℓ))
    record FlexibleMagma c ℓ : Set (suc (c ⊔ ℓ))
    record MedialMagma c ℓ : Set (suc (c ⊔ ℓ))
    record SemimedialMagma c ℓ : Set (suc (c ⊔ ℓ))
    record LeftBolLoop c ℓ : Set (suc (c ⊔ ℓ))
    record RightBolLoop c ℓ : Set (suc (c ⊔ ℓ))
    record MoufangLoop c ℓ : Set (suc (c ⊔ ℓ))
    record NonAssociativeRing c ℓ : Set (suc (c ⊔ ℓ))
    record MiddleBolLoop c ℓ : Set (suc (c ⊔ ℓ))

    and the existing record Lattice now provides

    ∨-commutativeSemigroup : CommutativeSemigroup c ℓ
    ∧-commutativeSemigroup : CommutativeSemigroup c ℓ

    and their corresponding algebraic subbundles.

  • Added new proofs to Algebra.Consequences.Base:

    reflexive+selfInverse⇒involutive : Reflexive _≈_ 
                                       SelfInverse _≈_ f 
                                       Involutive _≈_ f
  • Added new proofs to Algebra.Consequences.Propositional:

    comm+assoc⇒middleFour     : Commutative _•_ 
                                Associative _•_ 
                                _•_ MiddleFourExchange _•_
    identity+middleFour⇒assoc : Identity e _•_ 
                                _•_ MiddleFourExchange _•_ 
                                Associative _•_
    identity+middleFour⇒comm  : Identity e _+_ 
                                _•_ MiddleFourExchange _+_ 
                                Commutative _•_
  • Added new proofs to Algebra.Consequences.Setoid:

    comm+assoc⇒middleFour     : Congruent₂ _•_  Commutative _•_  Associative _•_ 
                                _•_ MiddleFourExchange _•_
    identity+middleFour⇒assoc : Congruent₂ _•_  Identity e _•_ 
                                _•_ MiddleFourExchange _•_ 
                                Associative _•_
    identity+middleFour⇒comm  : Congruent₂ _•_  Identity e _+_ 
                                _•_ MiddleFourExchange _+_ 
                                Commutative _•_
    
    involutive⇒surjective  : Involutive f   Surjective f
    selfInverse⇒involutive : SelfInverse f  Involutive f
    selfInverse⇒congruent  : SelfInverse f  Congruent f
    selfInverse⇒inverseᵇ   : SelfInverse f  Inverseᵇ f f
    selfInverse⇒surjective : SelfInverse f  Surjective f
    selfInverse⇒injective  : SelfInverse f  Injective f
    selfInverse⇒bijective  : SelfInverse f  Bijective f
    
    comm+idˡ⇒id              : Commutative _•_  LeftIdentity  e _•_  Identity e _•_
    comm+idʳ⇒id              : Commutative _•_  RightIdentity e _•_  Identity e _•_
    comm+zeˡ⇒ze              : Commutative _•_  LeftZero      e _•_  Zero     e _•_
    comm+zeʳ⇒ze              : Commutative _•_  RightZero     e _•_  Zero     e _•_
    comm+invˡ⇒inv            : Commutative _•_  LeftInverse  e _⁻¹ _•_  Inverse e _⁻¹ _•_
    comm+invʳ⇒inv            : Commutative _•_  RightInverse e _⁻¹ _•_  Inverse e _⁻¹ _•_
    comm+distrˡ⇒distr        : Commutative _•_  _•_ DistributesOverˡ _◦_  _•_ DistributesOver _◦_
    comm+distrʳ⇒distr        : Commutative _•_  _•_ DistributesOverʳ _◦_  _•_ DistributesOver _◦_
    distrib+absorbs⇒distribˡ : Associative _•_  Commutative _◦_  _•_ Absorbs _◦_  _◦_ Absorbs _•_  _◦_ DistributesOver _•_  _•_ DistributesOverˡ _◦_
  • Added new functions to Algebra.Construct.DirectProduct:

    rawSemiring : RawSemiring a ℓ₁  RawSemiring b ℓ₂  RawSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    rawRing : RawRing a ℓ₁  RawRing b ℓ₂  RawRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ₁ 
                                      SemiringWithoutAnnihilatingZero b ℓ₂ 
                                      SemiringWithoutAnnihilatingZero (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    semiring : Semiring a ℓ₁  Semiring b ℓ₂  Semiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    commutativeSemiring : CommutativeSemiring a ℓ₁  CommutativeSemiring b ℓ₂ 
                          CommutativeSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    ring : Ring a ℓ₁  Ring b ℓ₂  Ring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    commutativeRing : CommutativeRing a ℓ₁  CommutativeRing b ℓ₂ 
                      CommutativeRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    rawQuasigroup : RawQuasigroup a ℓ₁  RawQuasigroup b ℓ₂ 
                    RawQuasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    rawLoop : RawLoop a ℓ₁  RawLoop b ℓ₂  RawLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    unitalMagma : UnitalMagma a ℓ₁  UnitalMagma b ℓ₂ 
                  UnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    invertibleMagma : InvertibleMagma a ℓ₁  InvertibleMagma b ℓ₂ 
                      InvertibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    invertibleUnitalMagma : InvertibleUnitalMagma a ℓ₁  InvertibleUnitalMagma b ℓ₂ 
                            InvertibleUnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    quasigroup : Quasigroup a ℓ₁  Quasigroup b ℓ₂  Quasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    loop : Loop a ℓ₁  Loop b ℓ₂  Loop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    idempotentSemiring : IdempotentSemiring a ℓ₁  IdempotentSemiring b ℓ₂ 
                         IdempotentSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    idempotentMagma : IdempotentMagma a ℓ₁  IdempotentMagma b ℓ₂ 
                      IdempotentMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    alternativeMagma : AlternativeMagma a ℓ₁  AlternativeMagma b ℓ₂ 
                       AlternativeMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    flexibleMagma : FlexibleMagma a ℓ₁  FlexibleMagma b ℓ₂ 
                    FlexibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    medialMagma : MedialMagma a ℓ₁  MedialMagma b ℓ₂  MedialMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    semimedialMagma : SemimedialMagma a ℓ₁  SemimedialMagma b ℓ₂ 
                      SemimedialMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    kleeneAlgebra : KleeneAlgebra a ℓ₁  KleeneAlgebra b ℓ₂  KleeneAlgebra (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    leftBolLoop : LeftBolLoop a ℓ₁  LeftBolLoop b ℓ₂  LeftBolLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    rightBolLoop : RightBolLoop a ℓ₁  RightBolLoop b ℓ₂  RightBolLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    middleBolLoop : MiddleBolLoop a ℓ₁  MiddleBolLoop b ℓ₂  MiddleBolLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    moufangLoop : MoufangLoop a ℓ₁  MoufangLoop b ℓ₂  MoufangLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    rawRingWithoutOne : RawRingWithoutOne a ℓ₁  RawRingWithoutOne b ℓ₂  RawRingWithoutOne (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    ringWithoutOne : RingWithoutOne a ℓ₁  RingWithoutOne b ℓ₂  RingWithoutOne (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    nonAssociativeRing : NonAssociativeRing a ℓ₁  NonAssociativeRing b ℓ₂  NonAssociativeRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    quasiring : Quasiring a ℓ₁  Quasiring b ℓ₂  Quasiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
    nearring : Nearring a ℓ₁  Nearring b ℓ₂  Nearring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)

* Added new definition to `Algebra.Definitions`:
 ```agda
 _MiddleFourExchange_ : Op₂ A → Op₂ A → Set _

 SelfInverse : Op₁ A → Set _

 LeftDividesˡ  : Op₂ A → Op₂ A → Set _
 LeftDividesʳ  : Op₂ A → Op₂ A → Set _
 RightDividesˡ : Op₂ A → Op₂ A → Set _
 RightDividesʳ : Op₂ A → Op₂ A → Set _
 LeftDivides   : Op₂ A → Op₂ A → Set _
 RightDivides  : Op₂ A → Op₂ A → Set _

 LeftInvertible  e _∙_ x = ∃[ x⁻¹ ] (x⁻¹ ∙ x) ≈ e
 RightInvertible e _∙_ x = ∃[ x⁻¹ ] (x ∙ x⁻¹) ≈ e
 Invertible      e _∙_ x = ∃[ x⁻¹ ] ((x⁻¹ ∙ x) ≈ e) × ((x ∙ x⁻¹) ≈ e)
 StarRightExpansive e _+_ _∙_ _⁻* = ∀ x → (e + (x ∙ (x ⁻*))) ≈ (x ⁻*)
 StarLeftExpansive e _+_ _∙_ _⁻* = ∀ x →  (e + ((x ⁻*) ∙ x)) ≈ (x ⁻*)
 StarExpansive e _+_ _∙_ _* = (StarLeftExpansive e _+_ _∙_ _*) × (StarRightExpansive e _+_ _∙_ _*)
 StarLeftDestructive _+_ _∙_ _* = ∀ a b x → (b + (a ∙ x)) ≈ x → ((a *) ∙ b) ≈ x
 StarRightDestructive _+_ _∙_ _* = ∀ a b x → (b + (x ∙ a)) ≈ x → (b ∙ (a *)) ≈ x
 StarDestructive _+_ _∙_ _* = (StarLeftDestructive _+_ _∙_ _*) × (StarRightDestructive _+_ _∙_ _*)
 LeftAlternative _∙_ = ∀ x y  →  ((x ∙ x) ∙ y) ≈ (x ∙ (y ∙ y))
 RightAlternative _∙_ = ∀ x y → (x ∙ (y ∙ y)) ≈ ((x ∙ y) ∙ y)
 Alternative _∙_ = (LeftAlternative _∙_ ) × (RightAlternative _∙_)
 Flexible _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ (x ∙ (y ∙ x))
 Medial _∙_ = ∀ x y u z → ((x ∙ y) ∙ (u ∙ z)) ≈ ((x ∙ u) ∙ (y ∙ z))
 LeftSemimedial _∙_ = ∀ x y z → ((x ∙ x) ∙ (y ∙ z)) ≈ ((x ∙ y) ∙ (x ∙ z))
 RightSemimedial _∙_ = ∀ x y z → ((y ∙ z) ∙ (x ∙ x)) ≈ ((y ∙ x) ∙ (z ∙ x))
 Semimedial _∙_ = (LeftSemimedial _∙_) × (RightSemimedial _∙_)
 LeftBol _∙_ = ∀ x y z → (x ∙ (y ∙ (x ∙ z))) ≈ ((x ∙ (y ∙ z)) ∙ z )
 RightBol _∙_ = ∀ x y z → (((z ∙ x) ∙ y) ∙ x) ≈ (z ∙ ((x ∙ y) ∙ x))
 MiddleBol _∙_ _\\_ _//_ = ∀ x y z → (x ∙ ((y ∙ z) \\ x)) ≈ ((x // z) ∙ (y \\ x))
  • Added new functions to Algebra.Definitions.RawSemiring:

    _^[_]*_ : A  A  A
    _^ᵗ_     : A  A
  • Algebra.Properties.Magma.Divisibility now re-exports operations _∣ˡ_, _∤ˡ_, _∣ʳ_, _∤ʳ_ from Algebra.Definitions.Magma.

  • Added new proofs to Algebra.Properties.CommutativeSemigroup:

    interchange : Interchangable _∙_ _∙_
    xy∙xx≈x∙yxx :  x y  (x ∙ y) ∙ (x ∙ x) ≈ x ∙ (y ∙ (x ∙ x))
    leftSemimedial : LeftSemimedial _∙_
    rightSemimedial : RightSemimedial _∙_
    middleSemimedial :  x y z  (x ∙ y) ∙ (z ∙ x) ≈ (x ∙ z) ∙ (y ∙ x)
    semimedial : Semimedial _∙_
  • Added new proof to Algebra.Properties.Monoid.Mult:

    ×-congˡ :  {x}  (_× x) Preserves _≡_ ⟶ _≈_
  • Added new proof to Algebra.Properties.Monoid.Sum:

    sum-init-last :  {n} (t : Vector _ (suc n))  sum t ≈ sum (init t) + last t
  • Added new proofs to Algebra.Properties.Semigroup:

    leftAlternative : LeftAlternative _∙_
    rightAlternative : RightAlternative _∙_
    alternative : Alternative _∙_
    flexible : Flexible _∙_
  • Added new proofs to Algebra.Properties.Semiring.Exp:

    ^-congʳ               : (x ^_) Preserves _≡_ ⟶ _≈_
    y*x^m*y^n≈x^m*y^[n+1] : (x * y ≈ y * x)  y * (x ^ m * y ^ n) ≈ x ^ m * y ^ suc n
  • Added new proofs to Algebra.Properties.Semiring.Mult:

    1×-identityʳ : 1 × x ≈ x
    ×-comm-*    : x * (n × y) ≈ n × (x * y)
    ×-assoc-*   : (n × x) * y ≈ n × (x * y)
  • Added new proofs to Algebra.Properties.Ring:

    -1*x≈-x :  x  - 1# * x ≈ - x
    x+x≈x⇒x≈0 :  x  x + x ≈ x  x ≈ 0#
    x[y-z]≈xy-xz :  x y z  x * (y - z) ≈ x * y - x * z
    [y-z]x≈yx-zx :  x y z  (y - z) * x ≈ (y * x) - (z * x)
  • Added new definitions to Algebra.Structures:

    record IsUnitalMagma (_∙_ : Op₂ A) (ε : A) : Set (a ⊔ ℓ)
    record IsInvertibleMagma (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ)
    record IsInvertibleUnitalMagma (_∙_ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ)
    record IsQuasigroup (∙ \\ // : Op₂ A) : Set (a ⊔ ℓ)
    record IsLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ)
    record IsRingWithoutOne (+ * : Op₂ A) (-_ : Op₁ A) (0# : A) : Set (a ⊔ ℓ)
    record IsIdempotentSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ)
    record IsKleeneAlgebra (+ * : Op₂ A) (⋆ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ)
    record IsQuasiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
    record IsNearring (+ * : Op₂ A) (0# 1# : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
    record IsIdempotentMagma (∙ : Op₂ A) : Set (a ⊔ ℓ)
    record IsAlternativeMagma (∙ : Op₂ A) : Set (a ⊔ ℓ)
    record IsFlexibleMagma (∙ : Op₂ A) : Set (a ⊔ ℓ)
    record IsMedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ)
    record IsSemimedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ)
    record IsLeftBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ)
    record IsRightBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ)
    record IsMoufangLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ)
    record IsNonAssociativeRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ)
    record IsMiddleBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ)

    and the existing record IsLattice now provides

    ∨-isCommutativeSemigroup : IsCommutativeSemigroup ∨
    ∧-isCommutativeSemigroup : IsCommutativeSemigroup ∧
    

    and their corresponding algebraic substructures.

  • Added new records to Algebra.Morphism.Structures:

    record IsQuasigroupHomomorphism (⟦_⟧ : A  B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂)
    record IsQuasigroupMonomorphism (⟦_⟧ : A  B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂)
    record IsQuasigroupIsomorphism  (⟦_⟧ : A  B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
    record IsLoopHomomorphism       (⟦_⟧ : A  B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂)
    record IsLoopMonomorphism       (⟦_⟧ : A  B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂)
    record IsLoopIsomorphism        (⟦_⟧ : A  B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
    record IsRingWithoutOneHomomorphism (⟦_⟧ : A  B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂)
    record IsRingWithoutOneMonomorphism (⟦_⟧ : A  B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂)
    record IsRingWithoutOneIsoMorphism (⟦_⟧ : A  B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
  • Added new proofs in Data.Bool.Properties:

    <-wellFounded : WellFounded _<_
    ∨-conicalˡ : LeftConical false _∨_
    ∨-conicalʳ : RightConical false _∨_
    ∨-conical  : Conical false _∨_
    ∧-conicalˡ : LeftConical true _∧_
    ∧-conicalʳ : RightConical true _∧_
    ∧-conical  : Conical true _∧_
    
    true-xor            : true xor x ≡ not x
    xor-same            : x xor x ≡ false
    not-distribˡ-xor    : not (x xor y) ≡ (not x) xor y
    not-distribʳ-xor    : not (x xor y) ≡ x xor (not y)
    xor-assoc           : Associative _xor_
    xor-comm            : Commutative _xor_
    xor-identityˡ       : LeftIdentity false _xor_
    xor-identityʳ       : RightIdentity false _xor_
    xor-identity        : Identity false _xor_
    xor-inverseˡ        : LeftInverse true not _xor_
    xor-inverseʳ        : RightInverse true not _xor_
    xor-inverse         : Inverse true not _xor_
    ∧-distribˡ-xor      : _∧_ DistributesOverˡ _xor_
    ∧-distribʳ-xor      : _∧_ DistributesOverʳ _xor_
    ∧-distrib-xor       : _∧_ DistributesOver _xor_
    xor-annihilates-not : (not x) xor (not y) ≡ x xor y
  • Added new functions in Data.Fin.Base:

    finToFun  : Fin (m ^ n) → (Fin n → Fin m)
    funToFin  : (Fin m → Fin n) → Fin (n ^ m)
    quotient  : Fin (m * n) → Fin m
    remainder : Fin (m * n) → Fin n
    
  • Added new proofs in Data.Fin.Induction: every (strict) partial order is well-founded and Noetherian.

    spo-wellFounded :  {r} {_⊏_ : Rel (Fin n) r}  IsStrictPartialOrder _≈_ _⊏_  WellFounded _⊏_
    spo-noetherian  :  {r} {_⊏_ : Rel (Fin n) r}  IsStrictPartialOrder _≈_ _⊏_  WellFounded (flip _⊏_)
  • Added new definitions and proofs in Data.Fin.Permutation:

    insert         : Fin (suc m)  Fin (suc n)  Permutation m n  Permutation (suc m) (suc n)
    insert-punchIn : insert i j π ⟨$⟩ʳ punchIn i k ≡ punchIn j (π ⟨$⟩ʳ k)
    insert-remove  : insert i (π ⟨$⟩ʳ i) (remove i π) ≈ π
    remove-insert  : remove i (insert i j π) ≈ π
  • In Data.Fin.Properties: the proof that an injection from a type A into Fin n induces a decision procedure for _≡_ on A has been generalized to other equivalences over A (i.e. to arbitrary setoids), and renamed from eq? to the more descriptive inj⇒≟ and inj⇒decSetoid.

  • Added new proofs in Data.Fin.Properties:

    1↔⊤                : Fin 1 ↔ ⊤
    
    0≢1+n              : zero ≢ suc i
    
    ↑ˡ-injective       : i ↑ˡ n ≡ j ↑ˡ n → i ≡ j
    ↑ʳ-injective       : n ↑ʳ i ≡ n ↑ʳ j → i ≡ j
    finTofun-funToFin  : funToFin ∘ finToFun ≗ id
    funTofin-funToFun  : finToFun (funToFin f) ≗ f
    ^↔→                : Extensionality _ _ → Fin (m ^ n) ↔ (Fin n → Fin m)
    
    toℕ-mono-<         : i < j → toℕ i ℕ.< toℕ j
    toℕ-mono-≤         : i ≤ j → toℕ i ℕ.≤ toℕ j
    toℕ-cancel-≤       : toℕ i ℕ.≤ toℕ j → i ≤ j
    toℕ-cancel-<       : toℕ i ℕ.< toℕ j → i < j
    
    splitAt⁻¹-↑ˡ       : splitAt m {n} i ≡ inj₁ j → j ↑ˡ n ≡ i
    splitAt⁻¹-↑ʳ       : splitAt m {n} i ≡ inj₂ j → m ↑ʳ j ≡ i
    
    toℕ-combine        : toℕ (combine i j) ≡ k ℕ.* toℕ i ℕ.+ toℕ j
    combine-injectiveˡ : combine i j ≡ combine k l → i ≡ k
    combine-injectiveʳ : combine i j ≡ combine k l → j ≡ l
    combine-injective  : combine i j ≡ combine k l → i ≡ k × j ≡ l
    combine-surjective : ∀ i → ∃₂ λ j k → combine j k ≡ i
    combine-monoˡ-<    : i < j → combine i k < combine j l
    
    ℕ-ℕ≡toℕ‿ℕ-         : n ℕ-ℕ i ≡ toℕ (n ℕ- i)
    
    lower₁-injective   : lower₁ i n≢i ≡ lower₁ j n≢j → i ≡ j
    pinch-injective    : suc i ≢ j → suc i ≢ k → pinch i j ≡ pinch i k → j ≡ k
    
    i<1+i              : i < suc i
    
    injective⇒≤               : ∀ {f : Fin m → Fin n} → Injective f → m ℕ.≤ n
    <⇒notInjective            : ∀ {f : Fin m → Fin n} → n ℕ.< m → ¬ (Injective f)
    ℕ→Fin-notInjective        : ∀ (f : ℕ → Fin n) → ¬ (Injective f)
    cantor-schröder-bernstein : ∀ {f : Fin m → Fin n} {g : Fin n → Fin m} → Injective f → Injective g → m ≡ n
    
    cast-is-id    : cast eq k ≡ k
    subst-is-cast : subst Fin eq k ≡ cast eq k
    cast-trans    : cast eq₂ (cast eq₁ k) ≡ cast (trans eq₁ eq₂) k
    
  • Added new functions in Data.Integer.Base:

    _^_ : ℤ → ℕ → ℤ
    
    +-0-rawGroup  : Rawgroup 0ℓ 0ℓ
    
    *-rawMagma    : RawMagma 0ℓ 0ℓ
    *-1-rawMonoid : RawMonoid 0ℓ 0ℓ
    

* Added new proofs in `Data.Integer.Properties`:
 ```agda
 sign-cong′ : s₁ ◃ n₁ ≡ s₂ ◃ n₂ → s₁ ≡ s₂ ⊎ (n₁ ≡ 0 × n₂ ≡ 0)
 ≤-⊖        : m ℕ.≤ n → n ⊖ m ≡ + (n ∸ m)
 ∣⊖∣-≤      : m ℕ.≤ n → ∣ m ⊖ n ∣ ≡ n ∸ m
 ∣-∣-≤      : i ≤ j → + ∣ i - j ∣ ≡ j - i

 i^n≡0⇒i≡0      : i ^ n ≡ 0ℤ → i ≡ 0ℤ
 ^-identityʳ    : i ^ 1 ≡ i
 ^-zeroˡ        : 1 ^ n ≡ 1
 ^-*-assoc      : (i ^ m) ^ n ≡ i ^ (m ℕ.* n)
 ^-distribˡ-+-* : i ^ (m ℕ.+ n) ≡ i ^ m * i ^ n

 ^-isMagmaHomomorphism  : IsMagmaHomomorphism  ℕ.+-rawMagma    *-rawMagma    (i ^_)
 ^-isMonoidHomomorphism : IsMonoidHomomorphism ℕ.+-0-rawMonoid *-1-rawMonoid (i ^_)
  • Added new proofs in Data.Integer.GCD:

    gcd-assoc : Associative gcd
    gcd-zeroˡ : LeftZero 1ℤ gcd
    gcd-zeroʳ : RightZero 1ℤ gcd
    gcd-zero  : Zero 1ℤ gcd
  • Added new functions in Data.List:

    takeWhileᵇ   : (A  Bool)  List A  List A
    dropWhileᵇ   : (A  Bool)  List A  List A
    filterᵇ      : (A  Bool)  List A  List A
    partitionᵇ   : (A  Bool)  List A  List A × List A
    spanᵇ        : (A  Bool)  List A  List A × List A
    breakᵇ       : (A  Bool)  List A  List A × List A
    linesByᵇ     : (A  Bool)  List A  List (List A)
    wordsByᵇ     : (A  Bool)  List A  List (List A)
    derunᵇ       : (A  A  Bool)  List A  List A
    deduplicateᵇ : (A  A  Bool)  List A  List A
    
    findᵇ        : (A  Bool)  List A -> Maybe A
    findIndexᵇ   : (A  Bool)  (xs : List A)  Maybe $ Fin (length xs)
    findIndicesᵇ : (A  Bool)  (xs : List A)  List $ Fin (length xs)
    find         : Decidable P  List A  Maybe A
    findIndex    : Decidable P  (xs : List A)  Maybe $ Fin (length xs)
    findIndices  : Decidable P  (xs : List A)  List $ Fin (length xs)
  • Added new functions and definitions to Data.List.Base:

    catMaybes : List (Maybe A)  List A
    ap : List (A  B)  List A  List B
    ++-rawMagma : Set a  RawMagma a _
    ++-[]-rawMonoid : Set a  RawMonoid a _
  • Added new proofs in Data.List.Relation.Binary.Lex.Strict:

    xs≮[] : ¬ xs < []
  • Added new proofs to Data.List.Relation.Binary.Permutation.Propositional.Properties:

    Any-resp-[σ⁻¹∘σ] :: xs ↭ ys)  (ix : Any P xs)  Any-resp-↭ (trans σ (↭-sym σ)) ix ≡ ix
    ∈-resp-[σ⁻¹∘σ]   :: xs ↭ ys)  (ix : x ∈ xs)    ∈-resp-↭   (trans σ (↭-sym σ)) ix ≡ ix
  • Added new functions in Data.List.Relation.Unary.All:

    decide :  Π[ P ∪ Q ] → Π[ All P ∪ Any Q ]
    
  • Added new functions in Data.List.Fresh.Relation.Unary.All:

    decide :  Π[ P ∪ Q ] → Π[ All {R = R} P ∪ Any Q ]
    
  • Added new proofs to Data.List.Membership.Propositional.Properties:

    mapWith∈-id  : mapWith∈ xs (λ {x} _  x) ≡ xs
    map-mapWith∈ : map g (mapWith∈ xs f) ≡ mapWith∈ xs (g ∘′ f)
  • Added new proofs to Data.List.Membership.Setoid.Properties:

    mapWith∈-id  : mapWith∈ xs (λ {x} _  x) ≡ xs
    map-mapWith∈ : map g (mapWith∈ xs f) ≡ mapWith∈ xs (g ∘′ f)
    index-injective : index x₁∈xs ≡ index x₂∈xs  x₁ ≈ x₂
  • Add new proofs in Data.List.Properties:

    ∈⇒∣product : n ∈ ns  n ∣ product ns
    ∷ʳ-++ : xs ∷ʳ a ++ ys ≡ xs ++ a ∷ ys
    
    concatMap-cong : f ≗ g  concatMap f ≗ concatMap g
    concatMap-pure : concatMap [_] ≗ id
    concatMap-map  : concatMap g (map f xs) ≡ concatMap (g ∘′ f) xs
    map-concatMap  : map f ∘′ concatMap g ≗ concatMap (map f ∘′ g)
    
    length-isMagmaHomomorphism  : (A : Set a)  IsMagmaHomomorphism (++-rawMagma A) +-rawMagma length
    length-isMonoidHomomorphism : (A : Set a)  IsMonoidHomomorphism (++-[]-rawMonoid A) +-0-rawMonoid length
    
    take-map : take n (map f xs) ≡ map f (take n xs)
    drop-map : drop n (map f xs) ≡ map f (drop n xs)
    head-map : head (map f xs) ≡ Maybe.map f (head xs)
    
    take-suc               : take (suc m) xs ≡ take m xs ∷ʳ lookup xs i
    take-suc-tabulate      : take (suc m) (tabulate f) ≡ take m (tabulate f) ∷ʳ f i
    drop-take-suc          : drop m (take (suc m) xs) ≡ [ lookup xs i ]
    drop-take-suc-tabulate : drop m (take (suc m) (tabulate f)) ≡ [ f i ]
    
    take-all : n ≥ length xs  take n xs ≡ xs
    
    take-[] : take m [] ≡ []
    drop-[] : drop m [] ≡ []
    
    map-replicate : map f (replicate n x) ≡ replicate n (f x)
    
    drop-drop : drop n (drop m xs) ≡ drop (m + n) xs
  • Added new patterns and definitions to Data.Nat.Base:

    pattern z<s {n}         = s≤s (z≤n {n})
    pattern s<s {m} {n} m<n = s≤s {m} {n} m<n
    
    pattern <′-base          = ≤′-refl
    pattern <′-step {n} m<′n = ≤′-step {n} m<′n
    
    _⊔′_ :_⊓′_ :∣_-_∣′ :_! :parity : Parity
    
    +-rawMagma          : RawMagma 0ℓ 0ℓ
    +-0-rawMonoid       : RawMonoid 0ℓ 0ℓ
    *-rawMagma          : RawMagma 0ℓ 0ℓ
    *-1-rawMonoid       : RawMonoid 0ℓ 0ℓ
    +-*-rawNearSemiring : RawNearSemiring 0ℓ 0ℓ
    +-*-rawSemiring     : RawSemiring 0ℓ 0ℓ
  • Added a new proof to Data.Nat.Binary.Properties:

    suc-injective : Injective _≡_ _≡_ suc
    toℕ-inverseˡ  : Inverseˡ _≡_ _≡_ toℕ fromℕ
    toℕ-inverseʳ  : Inverseʳ _≡_ _≡_ toℕ fromℕ
    toℕ-inverseᵇ  : Inverseᵇ _≡_ _≡_ toℕ fromℕ
  • Added a new pattern synonym to Data.Nat.Divisibility.Core:

    pattern divides-refl q = divides q refl
  • Added new definitions and proofs to Data.Nat.Primality:

    Composite        : Set
    composite?       : Decidable composite
    composite⇒¬prime : Composite n  ¬ Prime n
    ¬composite⇒prime : 2 ≤ n  ¬ Composite n  Prime n
    prime⇒¬composite : Prime n  ¬ Composite n
    ¬prime⇒composite : 2 ≤ n  ¬ Prime n  Composite n
    euclidsLemma     : Prime p  p ∣ m * n  p ∣ m ⊎ p ∣ n
  • Added new proofs in Data.Nat.Properties:

    nonZero?  : Decidable NonZero
    n≮0       : n ≮ 0
    n+1+m≢m   : n + suc m ≢ m
    m*n≡0⇒m≡0 : .{{_ : NonZero n}}  m * n ≡ 0  m ≡ 0
    n>0⇒n≢0   : n > 0  n ≢ 0
    m^n≢0     : .{{_ : NonZero m}}  NonZero (m ^ n)
    m*n≢0     : .{{_ : NonZero m}} .{{_ : NonZero n}}  NonZero (m * n)
    m≤n⇒n∸m≤n : m ≤ n  n ∸ m ≤ n
    
    ≤-pred        : suc m ≤ suc n  m ≤ n
    s<s-injective :  {p q : m < n}  s<s p ≡ s<s q  p ≡ q
    <-pred        : suc m < suc n  m < n
    <-step        : m < n  m < 1 + n
    m<1+n⇒m<n∨m≡n : m < suc n  m < n ⊎ m ≡ n
    
    z<′s : zero <′ suc n
    s<′s : m <′ n  suc m <′ suc n
    <⇒<′ : m < n  m <′ n
    <′⇒< : m <′ n  m < n
    
    m+n≤p⇒m≤p∸n         : m + n ≤ p  m ≤ p ∸ n
    m≤p∸n⇒m+n≤p         : n ≤ p  m ≤ p ∸ n  m + n ≤ p
    
    1≤n!    : 1 ≤ n !
    _!≢0    : NonZero (n !)
    _!*_!≢0 : NonZero (m ! * n !)
    
    anyUpTo? :  (P? : U.Decidable P) (v : ℕ)  Dec (∃ λ n  n < v × P n)
    allUpTo? :  (P? : U.Decidable P) (v : ℕ)  Dec ( {n}  n < v  P n)
    
    n≤1⇒n≡0∨n≡1 : n ≤ 1  n ≡ 0 ⊎ n ≡ 1
    
    m^n>0 :  m .{{_ : NonZero m}} n  m ^ n > 0
    
    ^-monoˡ-≤ :  n  (_^ n) Preserves _≤_ ⟶ _≤_
    ^-monoʳ-≤ :  m .{{_ : NonZero m}}  (m ^_) Preserves _≤_ ⟶ _≤_
    ^-monoˡ-< :  n .{{_ : NonZero n}}  (_^ n) Preserves _<_ ⟶ _<_
    ^-monoʳ-< :  m  1 < m  (m ^_) Preserves _<_ ⟶ _<_
    
    n≡⌊n+n/2⌋ : n ≡ ⌊ n + n /2⌋
    n≡⌈n+n/2⌉ : n ≡ ⌈ n + n /2⌉
    
    m<n⇒m<n*o : .{{_ : NonZero o}}  m < n  m < n * o
    m<n⇒m<o*n : .{{_ : NonZero o}}  m < n  m < o * n
    ∸-monoˡ-< : m < o  n ≤ m  m ∸ n < o ∸ n
    
    m≤n⇒∣m-n∣≡n∸m : m ≤ n  ∣ m - n ∣ ≡ n ∸ m
    
    ⊔≡⊔′ : m ⊔ n ≡ m ⊔′ n
    ⊓≡⊓′ : m ⊓ n ≡ m ⊓′ n
    ∣-∣≡∣-∣′ : ∣ m - n ∣ ≡ ∣ m - n ∣′
  • Re-exported additional functions from Data.Nat:

    nonZero? : Decidable NonZero
    eq? : A ↣ ℕ  DecidableEquality A
    ≤-<-connex : Connex _≤_ _<_
    ≥->-connex : Connex _≥_ _>_
    <-≤-connex : Connex _<_ _≤_
    >-≥-connex : Connex _>_ _≥_
    <-cmp : Trichotomous _≡_ _<_
    anyUpTo? : (P? : Decidable P)   v  Dec (∃ λ n  n < v × P n)
    allUpTo? : (P? : Decidable P)   v  Dec ( {n}  n < v  P n)
  • Added new proofs in Data.Nat.Combinatorics:

    [n-k]*[n-k-1]!≡[n-k]!   : k < n  (n ∸ k) * (n ∸ suc k) ! ≡ (n ∸ k) !
    [n-k]*d[k+1]≡[k+1]*d[k] : k < n  (n ∸ k) * ((suc k) ! * (n ∸ suc k) !) ≡ (suc k) * (k ! * (n ∸ k) !)
    k![n∸k]!∣n!              : k ≤ n  k ! * (n ∸ k) ! ∣ n !
    nP1≡n                   : n P 1 ≡ n
    nC1≡n                   : n C 1 ≡ n
    nCk+nC[k+1]≡[n+1]C[k+1] : n C k + n C (suc k) ≡ suc n C suc k
  • Added new proofs in Data.Nat.DivMod:

    m%n≤n           : .{{_ : NonZero n}}  m % n ≤ n
    m*n/m!≡n/[m∸1]! : .{{_ : NonZero m}}  m * n / m ! ≡ n / (pred m) !
    
    %-congˡ             : .⦃ _ : NonZero o ⦄  m ≡ n  m % o ≡ n % o
    %-congʳ             : .⦃ _ : NonZero m ⦄ .⦃ _ : NonZero n ⦄  m ≡ n  o % m ≡ o % n
    m≤n⇒[n∸m]%m≡n%m     : .⦃ _ : NonZero m ⦄  m ≤ n  (n ∸ m) % m ≡ n % m
    m*n≤o⇒[o∸m*n]%n≡o%n : .⦃ _ : NonZero n ⦄  m * n ≤ o  (o ∸ m * n) % n ≡ o % n
    m∣n⇒o%n%m≡o%m       : .⦃ _ : NonZero m ⦄ .⦃ _ : NonZero n ⦄  m ∣ n  o % n % m ≡ o % m
    m<n⇒m%n≡m           : .⦃ _ : NonZero n ⦄  m < n  m % n ≡ m
    m*n/o*n≡m/o         : .⦃ _ : NonZero o ⦄ ⦃ _ : NonZero (o * n) ⦄  m * n / (o * n) ≡ m / o
    m<n*o⇒m/o<n         : .⦃ _ : NonZero o ⦄  m < n * o  m / o < n
    [m∸n]/n≡m/n∸1       : .⦃ _ : NonZero n ⦄  (m ∸ n) / n ≡ pred (m / n)
    [m∸n*o]/o≡m/o∸n     : .⦃ _ : NonZero o ⦄  (m ∸ n * o) / o ≡ m / o ∸ n
    m/n/o≡m/[n*o]       : .⦃ _ : NonZero n ⦄ .⦃ _ : NonZero o ⦄ .⦃ _ : NonZero (n * o) ⦄  m / n / o ≡ m / (n * o)
    m%[n*o]/o≡m/o%n     : .⦃ _ : NonZero n ⦄ .⦃ _ : NonZero o ⦄ ⦃ _ : NonZero (n * o) ⦄  m % (n * o) / o ≡ m / o % n
    m%n*o≡m*o%[n*o]     : .⦃ _ : NonZero n ⦄ ⦃ _ : NonZero (n * o) ⦄  m % n * o ≡ m * o % (n * o)
    
    [m*n+o]%[p*n]≡[m*n]%[p*n]+o : ⦃ _ : NonZero (p * n) ⦄  o < n  (m * n + o) % (p * n) ≡ (m * n) % (p * n) + o
  • Added new proofs in Data.Nat.Divisibility:

    n∣m*n*o       : n ∣ m * n * o
    m*n∣⇒m∣       : m * n ∣ i  m ∣ i
    m*n∣⇒n∣       : m * n ∣ i  n ∣ i
    m≤n⇒m!∣n!     : m ≤ n  m ! ∣ n !
    m/n/o≡m/[n*o] : .{{NonZero n}} .{{NonZero o}}  n * o ∣ m  (m / n) / o ≡ m / (n * o)
  • Added new proofs in Data.Nat.GCD:

    gcd-assoc     : Associative gcd
    gcd-identityˡ : LeftIdentity 0 gcd
    gcd-identityʳ : RightIdentity 0 gcd
    gcd-identity  : Identity 0 gcd
    gcd-zeroˡ     : LeftZero 1 gcd
    gcd-zeroʳ     : RightZero 1 gcd
    gcd-zero      : Zero 1 gcd
  • Added new patterns in Data.Nat.Reflection:

    pattern `ℕ     = def (quote ℕ) []
    pattern `zero  = con (quote ℕ.zero) []
    pattern `suc x = con (quote ℕ.suc) (x ⟨∷⟩ [])
  • Added new proofs in Data.Parity.Properties:

    suc-homo-⁻¹ : (parity (suc n)) ⁻¹ ≡ parity n
    +-homo-+    : parity (m ℕ.+ n) ≡ parity m ℙ.+ parity n
    *-homo-*    : parity (m ℕ.* n) ≡ parity m ℙ.* parity n
    parity-isMagmaHomomorphism : IsMagmaHomomorphism ℕ.+-rawMagma ℙ.+-rawMagma parity
    parity-isMonoidHomomorphism : IsMonoidHomomorphism ℕ.+-0-rawMonoid ℙ.+-0-rawMonoid parity
    parity-isNearSemiringHomomorphism : IsNearSemiringHomomorphism ℕ.+-*-rawNearSemiring ℙ.+-*-rawNearSemiring parity
    parity-isSemiringHomomorphism : IsSemiringHomomorphism ℕ.+-*-rawSemiring ℙ.+-*-rawSemiring parity
  • Added new rounding functions in Data.Rational.Base:

    floor ceiling truncate round ⌊_⌋ ⌈_⌉ [_] :fracPart :
  • Added new definitions and proofs in Data.Rational.Properties:

    ↥ᵘ-toℚᵘ : ↥ᵘ (toℚᵘ p) ≡ ↥ p
    ↧ᵘ-toℚᵘ : ↧ᵘ (toℚᵘ p) ≡ ↧ p
    
    _≥?_ : Decidable _≥_
    _>?_ : Decidable _>_
    
    +-*-rawNearSemiring                 : RawNearSemiring 0ℓ 0ℓ
    +-*-rawSemiring                     : RawSemiring 0ℓ 0ℓ
    toℚᵘ-isNearSemiringHomomorphism-+-* : IsNearSemiringHomomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ
    toℚᵘ-isNearSemiringMonomorphism-+-* : IsNearSemiringMonomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ
    toℚᵘ-isSemiringHomomorphism-+-*     : IsSemiringHomomorphism     +-*-rawSemiring     ℚᵘ.+-*-rawSemiring     toℚᵘ
    toℚᵘ-isSemiringMonomorphism-+-*     : IsSemiringMonomorphism     +-*-rawSemiring     ℚᵘ.+-*-rawSemiring     toℚᵘ
    
    pos⇒nonZero       : .{{Positive p}}  NonZero p
    neg⇒nonZero       : .{{Negative p}}  NonZero p
    nonZero⇒1/nonZero : .{{_ : NonZero p}}  NonZero (1/ p)
  • Added new rounding functions in Data.Rational.Unnormalised.Base:

    floor ceiling truncate round ⌊_⌋ ⌈_⌉ [_] : ℚᵘ fracPart : ℚᵘ  ℚᵘ
  • Added new definitions in Data.Rational.Unnormalised.Properties:

    +-*-rawNearSemiring : RawNearSemiring 0ℓ 0ℓ
    +-*-rawSemiring     : RawSemiring 0ℓ 0ℓ
    
    ≰⇒≥ : _≰_ ⇒ _≥_
    
    _≥?_ : Decidable _≥_
    _>?_ : Decidable _>_
    
    *-mono-≤-nonNeg   : .{{_ : NonNegative p}} .{{_ : NonNegative r}}  p ≤ q  r ≤ s  p * r ≤ q * s
    *-mono-<-nonNeg   : .{{_ : NonNegative p}} .{{_ : NonNegative r}}  p < q  r < s  p * r < q * s
    1/-antimono-≤-pos : .{{_ : Positive p}}    .{{_ : Positive q}}     p ≤ q  1/ q ≤ 1/ p
    ⊓-mono-<          : _⊓_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
    ⊔-mono-<          : _⊔_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
    
    pos⇒nonZero          : .{{_ : Positive p}}  NonZero p
    neg⇒nonZero          : .{{_ : Negative p}}  NonZero p
    pos+pos⇒pos          : .{{_ : Positive p}}    .{{_ : Positive q}}     Positive (p + q)
    nonNeg+nonNeg⇒nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative q}}  NonNegative (p + q)
    pos*pos⇒pos          : .{{_ : Positive p}}    .{{_ : Positive q}}     Positive (p * q)
    nonNeg*nonNeg⇒nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative q}}  NonNegative (p * q)
    pos⊓pos⇒pos          : .{{_ : Positive p}}    .{{_ : Positive q}}     Positive (p ⊓ q)
    pos⊔pos⇒pos          : .{{_ : Positive p}}    .{{_ : Positive q}}     Positive (p ⊔ q)
    1/nonZero⇒nonZero    : .{{_ : NonZero p}}  NonZero (1/ p)
  • Added new functions to Data.Product.Nary.NonDependent:

    zipWith : ( k  Projₙ as k  Projₙ bs k  Projₙ cs k) 
              Product n as  Product n bs  Product n cs
  • Added new proof to Data.Product.Properties:

    map-cong : f ≗ g  h ≗ i  map f h ≗ map g i
  • Added new definitions to Data.Product.Properties and Function.Related.TypeIsomorphisms for convenience:

    Σ-≡,≡→≡ : (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) → p₁ ≡ p₂
    Σ-≡,≡←≡ : p₁ ≡ p₂ → (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂)
    ×-≡,≡→≡ : (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂) → p₁ ≡ p₂
    ×-≡,≡←≡ : p₁ ≡ p₂ → (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂)
    
  • Added new proofs to Data.Product.Relation.Binary.Lex.Strict

    ×-respectsʳ : Transitive _≈₁_ 
                  _<₁_ Respectsʳ _≈₁_  _<₂_ Respectsʳ _≈₂_  _<ₗₑₓ_ Respectsʳ _≋_
    ×-respectsˡ : Symmetric _≈₁_  Transitive _≈₁_ 
                   _<₁_ Respectsˡ _≈₁_  _<₂_ Respectsˡ _≈₂_  _<ₗₑₓ_ Respectsˡ _≋_
    ×-wellFounded' : Transitive _≈₁_  _<₁_ Respectsʳ _≈₁_ 
                     WellFounded _<₁_  WellFounded _<₂_  WellFounded _<ₗₑₓ_
  • Added new definitions to Data.Sign.Base:

    *-rawMagma : RawMagma 0ℓ 0ℓ
    *-1-rawMonoid : RawMonoid 0ℓ 0ℓ
    *-1-rawGroup : RawGroup 0ℓ 0ℓ
  • Added new proofs to Data.Sign.Properties:

    *-inverse : Inverse + id _*_
    *-isCommutativeSemigroup : IsCommutativeSemigroup _*_
    *-isCommutativeMonoid : IsCommutativeMonoid _*_ +
    *-isGroup : IsGroup _*_ + id
    *-isAbelianGroup : IsAbelianGroup _*_ + id
    *-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
    *-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
    *-group : Group 0ℓ 0ℓ
    *-abelianGroup : AbelianGroup 0ℓ 0ℓ
    ≡-isDecEquivalence : IsDecEquivalence _≡_
  • Added new functions in Data.String.Base:

    wordsByᵇ : (Char  Bool)  String  List String
    linesByᵇ : (Char  Bool)  String  List String
  • Added new proofs in Data.String.Properties:

    ≤-isDecTotalOrder-≈ : IsDecTotalOrder _≈_ _≤_
    ≤-decTotalOrder-≈   :  DecTotalOrder _ _ _
    
  • Added new definitions in Data.Sum.Properties:

    swap-↔ : (A ⊎ B) ↔ (B ⊎ A)
    
  • Added new proofs in Data.Sum.Properties:

    map-assocˡ : (f : A → C) (g : B → D) (h : C → F) →
      map (map f g) h ∘ assocˡ ≗ assocˡ ∘ map f (map g h)
    map-assocʳ : (f : A → C) (g : B → D) (h : C → F) →
      map f (map g h) ∘ assocʳ ≗ assocʳ ∘ map (map f g) h
    
  • Made Map public in Data.Tree.AVL.IndexedMap

  • Added new definitions in Data.Vec.Base:

    truncate : m ≤ n  Vec A n  Vec A m
    pad      : m ≤ n  A  Vec A m  Vec A n
    
    FoldrOp A B =  {n}  A  B n  B (suc n)
    FoldlOp A B =  {n}  B n  A  B (suc n)
    
    foldr′ : (A  B  B)  B  Vec A n  B
    foldl′ : (B  A  B)  B  Vec A n  B
    countᵇ : (A  Bool)  Vec A n iterate : (A  A)  A  Vec A n
    
    diagonal           : Vec (Vec A n) n  Vec A n
    DiagonalBind._>>=_ : Vec A n  (A  Vec B n)  Vec B n
    
    _ʳ++_              : Vec A m  Vec A n  Vec A (m + n)
    
    cast : .(eq : m ≡ n)  Vec A m  Vec A n
  • Added new instance in Data.Vec.Effectful:

    monad : RawMonad (λ (A : Set a)  Vec A n)
  • Added new proofs in Data.Vec.Properties:

    padRight-refl      : padRight ≤-refl a xs ≡ xs
    padRight-replicate : replicate a ≡ padRight le a (replicate a)
    padRight-trans     : padRight (≤-trans m≤n n≤p) a xs ≡ padRight n≤p a (padRight m≤n a xs)
    
    truncate-refl     : truncate ≤-refl xs ≡ xs
    truncate-trans    : truncate (≤-trans m≤n n≤p) xs ≡ truncate m≤n (truncate n≤p xs)
    truncate-padRight : truncate m≤n (padRight m≤n a xs) ≡ xs
    
    map-const    : map (const x) xs ≡ replicate x
    map-⊛        : map f xs ⊛ map g xs ≡ map (f ˢ g) xs
    map-++       : map f (xs ++ ys) ≡ map f xs ++ map f ys
    map-is-foldr : map f ≗ foldr (Vec B) (λ x ys  f x ∷ ys) []
    map-∷ʳ       : map f (xs ∷ʳ x) ≡ (map f xs) ∷ʳ (f x)
    map-reverse  : map f (reverse xs) ≡ reverse (map f xs)
    map-ʳ++      : map f (xs ʳ++ ys) ≡ map f xs ʳ++ map f ys
    map-insert   : map f (insert xs i x) ≡ insert (map f xs) i (f x)
    toList-map   : toList (map f xs) ≡ List.map f (toList xs)
    
    lookup-concat : lookup (concat xss) (combine i j) ≡ lookup (lookup xss i) j
    
    ⊛-is->>=    : fs ⊛ xs ≡ fs >>= flip map xs
    lookup-⊛*   : lookup (fs ⊛* xs) (combine i j) ≡ (lookup fs i $ lookup xs j)
    ++-is-foldr : xs ++ ys ≡ foldr ((Vec A) ∘ (_+ n)) _∷_ ys xs
    []≔-++-↑ʳ   : (xs ++ ys) [ m ↑ʳ i ]≔ y ≡ xs ++ (ys [ i ]≔ y)
    unfold-ʳ++  : xs ʳ++ ys ≡ reverse xs ++ ys
    
    foldl-universal :  (h :  {c} (C : Set c) (g : FoldlOp A C) (e : C zero)   {n}  Vec A n  C n) 
                      ( ...  h C g e [] ≡ e) 
                      ( ...  h C g e ∘ (x ∷_) ≗ h (C ∘ suc) g (g e x)) 
                      h B f e ≗ foldl B f e
    foldl-fusion  : h d ≡ e  ( ...  h (f b x) ≡ g (h b) x)  h ∘ foldl B f d ≗ foldl C g e
    foldl-∷ʳ      : foldl B f e (ys ∷ʳ y) ≡ f (foldl B f e ys) y
    foldl-[]      : foldl B f e [] ≡ e
    foldl-reverse : foldl B {n} f e ∘ reverse ≗ foldr B (flip f) e
    
    foldr-[]      : foldr B f e [] ≡ e
    foldr-++      : foldr B f e (xs ++ ys) ≡ foldr (B ∘ (_+ n)) f (foldr B f e ys) xs
    foldr-∷ʳ      : foldr B f e (ys ∷ʳ y) ≡ foldr (B ∘ suc) f (f y e) ys
    foldr-ʳ++     : foldr B f e (xs ʳ++ ys) ≡ foldl (B ∘ (_+ n)) (flip f) (foldr B f e ys) xs
    foldr-reverse : foldr B f e ∘ reverse ≗ foldl B (flip f) e
    
    ∷ʳ-injective  : xs ∷ʳ x ≡ ys ∷ʳ y  xs ≡ ys × x ≡ y
    ∷ʳ-injectiveˡ : xs ∷ʳ x ≡ ys ∷ʳ y  xs ≡ ys
    ∷ʳ-injectiveʳ : xs ∷ʳ x ≡ ys ∷ʳ y  x ≡ y
    
    unfold-∷ʳ : cast eq (xs ∷ʳ x) ≡ xs ++ [ x ]
    init-∷ʳ   : init (xs ∷ʳ x) ≡ xs
    last-∷ʳ   : last (xs ∷ʳ x) ≡ x
    cast-∷ʳ   : cast eq (xs ∷ʳ x) ≡ (cast (cong pred eq) xs) ∷ʳ x
    ++-∷ʳ     : cast eq ((xs ++ ys) ∷ʳ z) ≡ xs ++ (ys ∷ʳ z)
    
    reverse-∷          : reverse (x ∷ xs) ≡ reverse xs ∷ʳ x
    reverse-involutive : Involutive _≡_ reverse
    reverse-reverse    : reverse xs ≡ ys  reverse ys ≡ xs
    reverse-injective  : reverse xs ≡ reverse ys  xs ≡ ys
    
    transpose-replicate : transpose (replicate xs) ≡ map replicate xs
    toList-replicate    : toList (replicate {n = n} a) ≡ List.replicate n a
    
    toList-++ : toList (xs ++ ys) ≡ toList xs List.++ toList ys
    
    cast-is-id    : cast eq xs ≡ xs
    subst-is-cast : subst (Vec A) eq xs ≡ cast eq xs
    cast-trans    : cast eq₂ (cast eq₁ xs) ≡ cast (trans eq₁ eq₂) xs
    map-cast      : map f (cast eq xs) ≡ cast eq (map f xs)
    lookup-cast   : lookup (cast eq xs) (Fin.cast eq i) ≡ lookup xs i
    lookup-cast₁  : lookup (cast eq xs) i ≡ lookup xs (Fin.cast (sym eq) i)
    lookup-cast₂  : lookup xs (Fin.cast eq i) ≡ lookup (cast (sym eq) xs) i
    cast-reverse : cast eq ∘ reverse ≗ reverse ∘ cast eq
    
    zipwith-++ : zipWith f (xs ++ ys) (xs' ++ ys') ≡ zipWith f xs xs' ++ zipWith f ys ys'
    
    ++-assoc     : cast eq ((xs ++ ys) ++ zs) ≡ xs ++ (ys ++ zs)
    ++-identityʳ : cast eq (xs ++ []) ≡ xs
    init-reverse : init ∘ reverse ≗ reverse ∘ tail
    last-reverse : last ∘ reverse ≗ head
    reverse-++   : cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs
    
    toList-cast   : toList (cast eq xs) ≡ toList xs
    cast-fromList : cast _ (fromList xs) ≡ fromList ys
    fromList-map  : cast _ (fromList (List.map f xs)) ≡ map f (fromList xs)
    fromList-++   : cast _ (fromList (xs List.++ ys)) ≡ fromList xs ++ fromList ys
  • Added new proofs in Data.Vec.Membership.Propositional.Properties:

    index-∈-fromList⁺ : Any.index (∈-fromList⁺ v∈xs) ≡ indexₗ v∈xs
  • Added new proofs in Data.Vec.Functional.Properties:

    map-updateAt : f ∘ g ≗ h ∘ f → map f (updateAt i g xs) ≗ updateAt i h (map f xs)
    
  • Added new proofs in Data.Vec.Relation.Binary.Lex.Strict:

    xs≮[] : {xs : Vec A n}  ¬ xs < []
    <-respectsˡ : IsPartialEquivalence _≈_  _≺_ Respectsˡ _≈_ 
                   {m n}  _Respectsˡ_ (_<_ {m} {n}) _≋_
    <-respectsʳ : IsPartialEquivalence _≈_  _≺_ Respectsʳ _≈_ 
                   {m n}  _Respectsʳ_ (_<_ {m} {n}) _≋_
    <-wellFounded : Transitive _≈_  _≺_ Respectsʳ _≈_  WellFounded _≺_ 
                     {n}  WellFounded (_<_ {n})

* Added new functions in `Data.Vec.Relation.Unary.Any`:

lookup : Any P xs → A


* Added new functions in `Data.Vec.Relation.Unary.All`:

decide : Π[ P ∪ Q ] → Π[ All P ∪ Any Q ]


* Added vector associativity proof to  `Data.Vec.Relation.Binary.Equality.Setoid`:

++-assoc : (xs ++ ys) ++ zs ≋ xs ++ (ys ++ zs)


* Added new functions in `Effect.Monad.State`:

runState : State s a → s → a × s evalState : State s a → s → a execState : State s a → s → s


* Added new proofs in `Function.Construct.Symmetry`:

bijective : Bijective ≈₁ ≈₂ f → Symmetric ≈₂ → Transitive ≈₂ → Congruent ≈₁ ≈₂ f → Bijective ≈₂ ≈₁ f⁻¹ isBijection : IsBijection ≈₁ ≈₂ f → Congruent ≈₂ ≈₁ f⁻¹ → IsBijection ≈₂ ≈₁ f⁻¹ isBijection-≡ : IsBijection ≈₁ f → IsBijection ≈₁ f⁻¹ bijection : Bijection R S → Congruent IB.Eq₂. IB.Eq₁. f⁻¹ → Bijection S R bijection-≡ : Bijection R (setoid B) → Bijection (setoid B) R sym-⤖ : A ⤖ B → B ⤖ A


* Added new operations in `Function.Strict`:

!|> : (a : A) → (∀ a → B a) → B a !|>′ : A → (A → B) → B


* Added new definition to the `Surjection` module in `Function.Related.Surjection`:

f⁻ = proj₁ ∘ surjective


* Added new operations in `IO`:

Colist.forM : Colist A → (A → IO B) → IO (Colist B) Colist.forM′ : Colist A → (A → IO B) → IO ⊤

List.forM : List A → (A → IO B) → IO (List B) List.forM′ : List A → (A → IO B) → IO ⊤


* Added new operations in `IO.Base`:

lift! : IO A → IO (Lift b A) <$ : B → IO A → IO B =<< : (A → IO B) → IO A → IO B << : IO B → IO A → IO B lift′ : Prim.IO ⊤ → IO {a} ⊤

when : Bool → IO ⊤ → IO ⊤ unless : Bool → IO ⊤ → IO ⊤

whenJust : Maybe A → (A → IO ⊤) → IO ⊤ untilJust : IO (Maybe A) → IO A untilRight : (A → IO (A ⊎ B)) → A → IO B


* Added new functions in `Reflection.AST.Term`:

stripPis : Term → List (String × Arg Type) × Term prependLams : List (String × Visibility) → Term → Term prependHLams : List String → Term → Term prependVLams : List String → Term → Term


* Added new operations in `Relation.Binary.Construct.Closure.Equivalence`:

fold : IsEquivalence → EqClosure gfold : IsEquivalence =[ f ]⇒ → EqClosure =[ f ]⇒ return : ⇒ EqClosure join : EqClosure (EqClosure ) ⇒ EqClosure _⋆ : ⟶₁ ⇒ EqClosure ⟶₂ → EqClosure ⟶₁ ⇒ EqClosure ⟶₂


* Added new operations in `Relation.Binary.Construct.Closure.Symmetric`:

fold : Symmetric → SymClosure gfold : Symmetric =[ f ]⇒ → SymClosure =[ f ]⇒ return : ⇒ SymClosure join : SymClosure (SymClosure ) ⇒ SymClosure _⋆ : ⟶₁ ⇒ SymClosure ⟶₂ → SymClosure ⟶₁ ⇒ SymClosure ⟶₂


* Added new proofs to `Relation.Binary.Lattice.Properties.{Join,Meet}Semilattice`:
```agda
isPosemigroup : IsPosemigroup _≈_ _≤_ _∨_
posemigroup : Posemigroup c ℓ₁ ℓ₂
≈-dec⇒≤-dec : Decidable _≈_ → Decidable _≤_
≈-dec⇒isDecPartialOrder : Decidable _≈_ → IsDecPartialOrder _≈_ _≤_
  • Added new proofs to Relation.Binary.Lattice.Properties.Bounded{Join,Meet}Semilattice:

    isCommutativePomonoid : IsCommutativePomonoid _≈_ _≤_ _∨_ ⊥
    commutativePomonoid : CommutativePomonoid c ℓ₁ ℓ₂
  • Added new proofs to Relation.Binary.Properties.Poset:

    ≤-dec⇒≈-dec : Decidable _≤_  Decidable _≈_
    ≤-dec⇒isDecPartialOrder : Decidable _≤_  IsDecPartialOrder _≈_ _≤_
  • Added new proofs in Relation.Binary.Properties.StrictPartialOrder:

    >-strictPartialOrder : StrictPartialOrder s₁ s₂ s₃
  • Added new proofs in Relation.Binary.PropositionalEquality.Properties:

    subst-application′ : subst Q eq (f x p) ≡ f y (subst P eq p)
    sym-cong : sym (cong f p) ≡ cong f (sym p)
    
  • Added new proofs in Relation.Binary.HeterogeneousEquality:

    subst₂-removable : subst₂ _∼_ eq₁ eq₂ p ≅ p
    
  • Added new definitions in Relation.Unary:

    _≐_  : Pred A ℓ₁ → Pred A ℓ₂ → Set _
    _≐′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _
    _∖_  : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
    
  • Added new proofs in Relation.Unary.Properties:

    ⊆-reflexive : _≐_ ⇒ _⊆_
    ⊆-antisym : Antisymmetric _≐_ _⊆_
    ⊆-min : Min _⊆_ ∅
    ⊆-max : Max _⊆_ U
    ⊂⇒⊆ : _⊂_ ⇒ _⊆_
    ⊂-trans : Trans _⊂_ _⊂_ _⊂_
    ⊂-⊆-trans : Trans _⊂_ _⊆_ _⊂_
    ⊆-⊂-trans : Trans _⊆_ _⊂_ _⊂_
    ⊂-respʳ-≐ : _⊂_ Respectsʳ _≐_
    ⊂-respˡ-≐ : _⊂_ Respectsˡ _≐_
    ⊂-resp-≐ : _⊂_ Respects₂ _≐_
    ⊂-irrefl : Irreflexive _≐_ _⊂_
    ⊂-antisym : Antisymmetric _≐_ _⊂_
    ∅-⊆′ : (P : Pred A ℓ) → ∅ ⊆′ P
    ⊆′-U : (P : Pred A ℓ) → P ⊆′ U
    ⊆′-refl : Reflexive {A = Pred A ℓ} _⊆′_
    ⊆′-reflexive : _≐′_ ⇒ _⊆′_
    ⊆′-trans : Trans _⊆′_ _⊆′_ _⊆′_
    ⊆′-antisym : Antisymmetric _≐′_ _⊆′_
    ⊆′-min : Min _⊆′_ ∅
    ⊆′-max : Max _⊆′_ U
    ⊂′⇒⊆′ : _⊂′_ ⇒ _⊆′_
    ⊂′-trans : Trans _⊂′_ _⊂′_ _⊂′_
    ⊂′-⊆′-trans : Trans _⊂′_ _⊆′_ _⊂′_
    ⊆′-⊂′-trans : Trans _⊆′_ _⊂′_ _⊂′_
    ⊂′-respʳ-≐′ : _⊂′_ Respectsʳ _≐′_
    ⊂′-respˡ-≐′ : _⊂′_ Respectsˡ _≐′_
    ⊂′-resp-≐′ : _⊂′_ Respects₂ _≐′_
    ⊂′-irrefl : Irreflexive _≐′_ _⊂′_
    ⊂′-antisym : Antisymmetric _≐′_ _⊂′_
    ⊆⇒⊆′ : _⊆_ ⇒ _⊆′_
    ⊆′⇒⊆ : _⊆′_ ⇒ _⊆_
    ⊂⇒⊂′ : _⊂_ ⇒ _⊂′_
    ⊂′⇒⊂ : _⊂′_ ⇒ _⊂_
    ≐-refl : Reflexive _≐_
    ≐-sym : Sym _≐_ _≐_
    ≐-trans : Trans _≐_ _≐_ _≐_
    ≐′-refl : Reflexive _≐′_
    ≐′-sym : Sym _≐′_ _≐′_
    ≐′-trans : Trans _≐′_ _≐′_ _≐′_
    ≐⇒≐′ : _≐_ ⇒ _≐′_
    ≐′⇒≐ : _≐′_ ⇒ _≐_
    
    U-irrelevant : Irrelevant {A = A} U
    ∁-irrelevant : (P : Pred A ℓ) → Irrelevant (∁ P)
    
  • Generalised proofs in Relation.Unary.Properties:

    ⊆-trans : Trans _⊆_ _⊆_ _⊆_
    
  • Added new proofs in Relation.Binary.Properties.Setoid:

    ≈-isPreorder     : IsPreorder _≈_ _≈_
    ≈-isPartialOrder : IsPartialOrder _≈_ _≈_
    
    ≈-preorder : Preorder a ℓ ℓ
    ≈-poset    : Poset a ℓ ℓ
    
  • Added new definitions in Relation.Binary.Definitions:

    Cotransitive _#_ = ∀ {x y} → x # y → ∀ z → (x # z) ⊎ (z # y)
    Tight    _≈_ _#_ = ∀ x y → (¬ x # y → x ≈ y) × (x ≈ y → ¬ x # y)
    
    Monotonic₁         _≤_ _⊑_ f     = f Preserves _≤_ ⟶ _⊑_
    Antitonic₁         _≤_ _⊑_ f     = f Preserves (flip _≤_) ⟶ _⊑_
    Monotonic₂         _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ _⊑_ ⟶ _≼_
    MonotonicAntitonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ (flip _⊑_) ⟶ _≼_
    AntitonicMonotonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ _⊑_ ⟶ _≼_
    Antitonic₂         _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ (flip _⊑_) ⟶ _≼_
    Adjoint            _≤_ _⊑_ f g   = ∀ {x y} → (f x ⊑ y → x ≤ g y) × (x ≤ g y → f x ⊑ y)
    
  • Added new definitions in Relation.Binary.Bundles:

    record ApartnessRelation c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
    
  • Added new definitions in Relation.Binary.Structures:

    record IsApartnessRelation (_#_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where
    
  • Added new proofs to Relation.Binary.Consequences:

    sym⇒¬-sym       : Symmetric _∼_ → Symmetric _≁_
    cotrans⇒¬-trans : Cotransitive _∼_ → Transitive _≁_
    irrefl⇒¬-refl   : Reflexive _≈_ → Irreflexive _≈_ _∼_ →  Reflexive _≁_
    mono₂⇒cong₂     : Symmetric ≈₁ → ≈₁ ⇒ ≤₁ → Antisymmetric ≈₂ ≤₂ → ∀ {f} →
                      f Preserves₂ ≤₁ ⟶ ≤₁ ⟶ ≤₂ →
                      f Preserves₂ ≈₁ ⟶ ≈₁ ⟶ ≈₂
    
  • Added new proofs to Relation.Binary.Construct.Closure.Transitive:

    accessible⁻ : ∀ {x} → Acc _∼⁺_ x → Acc _∼_ x
    wellFounded⁻ : WellFounded _∼⁺_ → WellFounded _∼_
    accessible : ∀ {x} → Acc _∼_ x → Acc _∼⁺_ x
    
  • Added new operations in Relation.Binary.PropositionalEquality.Properties:

    J       : (B : (y : A) → x ≡ y → Set b) (p : x ≡ y) → B x refl → B y p
    dcong   : (p : x ≡ y) → subst B p (f x) ≡ f y
    dcong₂  : (p : x₁ ≡ x₂) → subst B p y₁ ≡ y₂ → f x₁ y₁ ≡ f x₂ y₂
    dsubst₂ : (p : x₁ ≡ x₂) → subst B p y₁ ≡ y₂ → C x₁ y₁ → C x₂ y₂
    ddcong₂ : (p : x₁ ≡ x₂) (q : subst B p y₁ ≡ y₂) → dsubst₂ C p q (f x₁ y₁) ≡ f x₂ y₂
    
    isPartialOrder : IsPartialOrder _≡_ _≡_
    poset          : Set a → Poset _ _ _
    
  • Added new operations in System.Exit:

    isSuccess : ExitCode → Bool
    isFailure : ExitCode → Bool
    
  • Added new functions in Codata.Guarded.Stream:

    transpose : List (Stream A) → Stream (List A)
    transpose⁺ : List⁺ (Stream A) → Stream (List⁺ A)
    concat : Stream (List⁺ A) → Stream A
    
  • Added new proofs in Codata.Guarded.Stream.Properties:

    cong-concat : {ass bss : Stream (List⁺.List⁺ A)} → ass ≈ bss → concat ass ≈ concat bss
    map-concat : ∀ (f : A → B) ass → map f (concat ass) ≈ concat (map (List⁺.map f) ass)
    lookup-transpose : ∀ n (ass : List (Stream A)) → lookup n (transpose ass) ≡ List.map (lookup n) ass
    lookup-transpose⁺ : ∀ n (ass : List⁺ (Stream A)) → lookup n (transpose⁺ ass) ≡ List⁺.map (lookup n) ass
    
  • Added new corollaries in Data.List.Membership.Setoid.Properties:

    ∈-++⁺∘++⁻ : ∀ {v} xs {ys} (p : v ∈ xs ++ ys) → [ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ (∈-++⁻ xs p) ≡ p
    ∈-++⁻∘++⁺ : ∀ {v} xs {ys} (p : v ∈ xs ⊎ v ∈ ys) → ∈-++⁻ xs ([ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ p) ≡ p
    ∈-++↔ : ∀ {v xs ys} → (v ∈ xs ⊎ v ∈ ys) ↔ v ∈ xs ++ ys
    ∈-++-comm : ∀ {v} xs ys → v ∈ xs ++ ys → v ∈ ys ++ xs
    ∈-++-comm∘++-comm : ∀ {v} xs {ys} (p : v ∈ xs ++ ys) → ∈-++-comm ys xs (∈-++-comm xs ys p) ≡ p
    ∈-++↔++ : ∀ {v} xs ys → v ∈ xs ++ ys ↔ v ∈ ys ++ xs
    
  • Exposed container combinator conversion functions from Data.Container.Combinator.Properties separate from their correctness proofs in Data.Container.Combinator:

    to-id      : F.id A → ⟦ id ⟧ A
    from-id    : ⟦ id ⟧ A → F.id A
    to-const   : (A : Set s) → A → ⟦ const A ⟧ B
    from-const : (A : Set s) → ⟦ const A ⟧ B → A
    to-∘       : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ ⟧ (⟦ C₂ ⟧ A) → ⟦ C₁ ∘ C₂ ⟧ A
    from-∘     : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ ∘ C₂ ⟧ A → ⟦ C₁ ⟧ (⟦ C₂ ⟧ A)
    to-×       : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A → ⟦ C₁ × C₂ ⟧ A
    from-×     : (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) → ⟦ C₁ × C₂ ⟧ A → ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A
    to-Π       : (I : Set i) (Cᵢ : I → Container s p) → (∀ i → ⟦ Cᵢ i ⟧ A) → ⟦ Π I Cᵢ ⟧ A
    from-Π     : (I : Set i) (Cᵢ : I → Container s p) → ⟦ Π I Cᵢ ⟧ A → ∀ i → ⟦ Cᵢ i ⟧ A
    to-⊎       : (C₁ : Container s₁ p) (C₂ : Container s₂ p) → ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A → ⟦ C₁ ⊎ C₂ ⟧ A
    from-⊎     : (C₁ : Container s₁ p) (C₂ : Container s₂ p) → ⟦ C₁ ⊎ C₂ ⟧ A → ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A
    to-Σ       : (I : Set i) (C : I → Container s p) → (∃ λ i → ⟦ C i ⟧ A) → ⟦ Σ I C ⟧ A
    from-Σ     : (I : Set i) (C : I → Container s p) → ⟦ Σ I C ⟧ A → ∃ λ i → ⟦ C i ⟧ A
    
  • Added a non-dependent version of Function.Base.flip due to an issue noted in Pull Request #1812:

    flip′ : (A  B  C)  (B  A  C)
  • Added new proofs to Data.List.Properties

    cartesianProductWith-zeroˡ       : cartesianProductWith f [] ys ≡ []
    cartesianProductWith-zeroʳ       : cartesianProductWith f xs [] ≡ []
    cartesianProductWith-distribʳ-++ : cartesianProductWith f (xs ++ ys) zs ≡
                                       cartesianProductWith f xs zs ++ cartesianProductWith f ys zs
    foldr-map : foldr f x (map g xs) ≡ foldr (g -⟨ f ∣) x xs
    foldl-map : foldl f x (map g xs) ≡ foldl (∣ f ⟩- g) x xs

NonZero/Positive/Negative changes

This is a full list of proofs that have changed form to use irrelevant instance arguments:

  • In Data.Nat.Base:

    ≢-nonZero⁻¹ : ∀ {n} → .(NonZero n) → n ≢ 0
    >-nonZero⁻¹ : ∀ {n} → .(NonZero n) → n > 0
    
  • In Data.Nat.Properties:

    *-cancelʳ-≡ : ∀ m n {o} → m * suc o ≡ n * suc o → m ≡ n
    *-cancelˡ-≡ : ∀ {m n} o → suc o * m ≡ suc o * n → m ≡ n
    *-cancelʳ-≤ : ∀ m n o → m * suc o ≤ n * suc o → m ≤ n
    *-cancelˡ-≤ : ∀ {m n} o → suc o * m ≤ suc o * n → m ≤ n
    *-monoˡ-<   : ∀ n → (_* suc n) Preserves _<_ ⟶ _<_
    *-monoʳ-<   : ∀ n → (suc n *_) Preserves _<_ ⟶ _<_
    
    m≤m*n          : ∀ m {n} → 0 < n → m ≤ m * n
    m≤n*m          : ∀ m {n} → 0 < n → m ≤ n * m
    m<m*n          : ∀ {m n} → 0 < m → 1 < n → m < m * n
    suc[pred[n]]≡n : ∀ {n} → n ≢ 0 → suc (pred n) ≡ n
    
  • In Data.Nat.Coprimality:

    Bézout-coprime : ∀ {i j d} → Bézout.Identity (suc d) (i * suc d) (j * suc d) → Coprime i j
    
  • In Data.Nat.Divisibility

    m%n≡0⇒n∣m :  m n  m % suc n ≡ 0  suc n ∣ m
    n∣m⇒m%n≡0 :  m n  suc n ∣ m  m % suc n ≡ 0
    m%n≡0⇔n∣m :  m n  m % suc n ≡ 0 ⇔ suc n ∣ m
    ∣⇒≤       :  {m n}  m ∣ suc n  m ≤ suc n
    >⇒∤        :  {m n}  m > suc n  m ∤ suc n
    *-cancelˡ-∣ :  {i j} k  suc k * i ∣ suc k * j  i ∣ j
  • In Data.Nat.DivMod:

    m≡m%n+[m/n]*n : ∀ m n → m ≡ m % suc n + (m / suc n) * suc n
    m%n≡m∸m/n*n   : ∀ m n → m % suc n ≡ m ∸ (m / suc n) * suc n
    n%n≡0         : ∀ n → suc n % suc n ≡ 0
    m%n%n≡m%n     : ∀ m n → m % suc n % suc n ≡ m % suc n
    [m+n]%n≡m%n   : ∀ m n → (m + suc n) % suc n ≡ m % suc n
    [m+kn]%n≡m%n  : ∀ m k n → (m + k * (suc n)) % suc n ≡ m % suc n
    m*n%n≡0       : ∀ m n → (m * suc n) % suc n ≡ 0
    m%n<n         : ∀ m n → m % suc n < suc n
    m%n≤m         : ∀ m n → m % suc n ≤ m
    m≤n⇒m%n≡m     : ∀ {m n} → m ≤ n → m % suc n ≡ m
    
    m/n<m         : ∀ m n {≢0} → m ≥ 1 → n ≥ 2 → (m / n) {≢0} < m
    
  • In Data.Nat.GCD

    GCD-* : ∀ {m n d c} → GCD (m * suc c) (n * suc c) (d * suc c) → GCD m n d
    gcd[m,n]≤n : ∀ m n → gcd m (suc n) ≤ suc n
    
  • In Data.Integer.Properties:

    positive⁻¹        : ∀ {i} → Positive i → i > 0ℤ
    negative⁻¹        : ∀ {i} → Negative i → i < 0ℤ
    nonPositive⁻¹     : ∀ {i} → NonPositive i → i ≤ 0ℤ
    nonNegative⁻¹     : ∀ {i} → NonNegative i → i ≥ 0ℤ
    negative<positive : ∀ {i j} → Negative i → Positive j → i < j
    
    sign-◃    : ∀ s n → sign (s ◃ suc n) ≡ s
    sign-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂
    -◃<+◃     : ∀ m n → Sign.- ◃ (suc m) < Sign.+ ◃ n
    m⊖1+n<m   : ∀ m n → m ⊖ suc n < + m
    
    *-cancelʳ-≡     : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j
    *-cancelˡ-≡     : ∀ i j k → i ≢ + 0 → i * j ≡ i * k → j ≡ k
    *-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n
    
    ≤-steps     : ∀ n → i ≤ j → i ≤ + n + j
    ≤-steps-neg : ∀ n → i ≤ j → i - + n ≤ j
    n≤m+n       : ∀ n → i ≤ + n + i
    m≤m+n       : ∀ n → i ≤ i + + n
    m-n≤m       : ∀ i n → i - + n ≤ i
    
    *-cancelʳ-≤-pos    : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n
    *-cancelˡ-≤-pos    : ∀ m j k → + suc m * j ≤ + suc m * k → j ≤ k
    *-cancelˡ-≤-neg    : ∀ m {j k} → -[1+ m ] * j ≤ -[1+ m ] * k → j ≥ k
    *-cancelʳ-≤-neg    : ∀ {n o} m → n * -[1+ m ] ≤ o * -[1+ m ] → n ≥ o
    *-cancelˡ-<-nonNeg : ∀ n → + n * i < + n * j → i < j
    *-cancelʳ-<-nonNeg : ∀ n → i * + n < j * + n → i < j
    *-monoʳ-≤-nonNeg   : ∀ n → (_* + n) Preserves _≤_ ⟶ _≤_
    *-monoˡ-≤-nonNeg   : ∀ n → (+ n *_) Preserves _≤_ ⟶ _≤_
    *-monoˡ-≤-nonPos   : ∀ i → NonPositive i → (i *_) Preserves _≤_ ⟶ _≥_
    *-monoʳ-≤-nonPos   : ∀ i → NonPositive i → (_* i) Preserves _≤_ ⟶ _≥_
    *-monoˡ-<-pos      : ∀ n → (+[1+ n ] *_) Preserves _<_ ⟶ _<_
    *-monoʳ-<-pos      : ∀ n → (_* +[1+ n ]) Preserves _<_ ⟶ _<_
    *-monoˡ-<-neg      : ∀ n → (-[1+ n ] *_) Preserves _<_ ⟶ _>_
    *-monoʳ-<-neg      : ∀ n → (_* -[1+ n ]) Preserves _<_ ⟶ _>_
    *-cancelˡ-<-nonPos : ∀ n → NonPositive n → n * i < n * j → i > j
    *-cancelʳ-<-nonPos : ∀ n → NonPositive n → i * n < j * n → i > j
    
    *-distribˡ-⊓-nonNeg : ∀ m j k → + m * (j ⊓ k) ≡ (+ m * j) ⊓ (+ m * k)
    *-distribʳ-⊓-nonNeg : ∀ m j k → (j ⊓ k) * + m ≡ (j * + m) ⊓ (k * + m)
    *-distribˡ-⊓-nonPos : ∀ i → NonPositive i → ∀ j k → i * (j ⊓ k) ≡ (i * j) ⊔ (i * k)
    *-distribʳ-⊓-nonPos : ∀ i → NonPositive i → ∀ j k → (j ⊓ k) * i ≡ (j * i) ⊔ (k * i)
    *-distribˡ-⊔-nonNeg : ∀ m j k → + m * (j ⊔ k) ≡ (+ m * j) ⊔ (+ m * k)
    *-distribʳ-⊔-nonNeg : ∀ m j k → (j ⊔ k) * + m ≡ (j * + m) ⊔ (k * + m)
    *-distribˡ-⊔-nonPos : ∀ i → NonPositive i → ∀ j k → i * (j ⊔ k) ≡ (i * j) ⊓ (i * k)
    *-distribʳ-⊔-nonPos : ∀ i → NonPositive i → ∀ j k → (j ⊔ k) * i ≡ (j * i) ⊓ (k * i)
    
  • In Data.Integer.Divisibility:

    *-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j
    *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
    
  • In Data.Integer.Divisibility.Signed:

    *-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j
    *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
    
  • In Data.Rational.Unnormalised.Properties:

    positive⁻¹           :  {q}  .(Positive q)  q > 0ℚᵘ
    nonNegative⁻¹        :  {q}  .(NonNegative q)  q ≥ 0ℚᵘ
    negative⁻¹           :  {q}  .(Negative q)  q < 0ℚᵘ
    nonPositive⁻¹        :  {q}  .(NonPositive q)  q ≤ 0ℚᵘ
    positive⇒nonNegative :  {p}  Positive p  NonNegative p
    negative⇒nonPositive :  {p}  Negative p  NonPositive p
    negative<positive    :  {p q}  .(Negative p)  .(Positive q)  p < q
    nonNeg∧nonPos⇒0      :  {p}  .(NonNegative p)  .(NonPositive p)  p ≃ 0ℚᵘ
    
    ≤-steps :  {p q r}  NonNegative r  p ≤ q  p ≤ r + q
    p≤p+q   :  {p q}  NonNegative q  p ≤ p + q
    p≤q+p   :  {p}  NonNegative p   {q}  q ≤ p + q
    
    *-cancelʳ-≤-pos    :  {r}  Positive r   {p q}  p * r ≤ q * r  p ≤ q
    *-cancelˡ-≤-pos    :  {r}  Positive r   {p q}  r * p ≤ r * q  p ≤ q
    *-cancelʳ-≤-neg    :  r  Negative r   {p q}  p * r ≤ q * r  q ≤ p
    *-cancelˡ-≤-neg    :  r  Negative r   {p q}  r * p ≤ r * q  q ≤ p
    *-cancelˡ-<-nonNeg :  {r}  NonNegative r   {p q}  r * p < r * q  p < q
    *-cancelʳ-<-nonNeg :  {r}  NonNegative r   {p q}  p * r < q * r  p < q
    *-cancelˡ-<-nonPos :  r  NonPositive r   {p q}  r * p < r * q  q < p
    *-cancelʳ-<-nonPos :  r  NonPositive r   {p q}  p * r < q * r  q < p
    *-monoˡ-≤-nonNeg   :  {r}  NonNegative r  (_* r) Preserves _≤_ ⟶ _≤_
    *-monoʳ-≤-nonNeg   :  {r}  NonNegative r  (r *_) Preserves _≤_ ⟶ _≤_
    *-monoˡ-≤-nonPos   :  r  NonPositive r  (_* r) Preserves _≤_ ⟶ _≥_
    *-monoʳ-≤-nonPos   :  r  NonPositive r  (r *_) Preserves _≤_ ⟶ _≥_
    *-monoˡ-<-pos      :  {r}  Positive r  (_* r) Preserves _<_ ⟶ _<_
    *-monoʳ-<-pos      :  {r}  Positive r  (r *_) Preserves _<_ ⟶ _<_
    *-monoˡ-<-neg      :  r  Negative r  (_* r) Preserves _<_ ⟶ _>_
    *-monoʳ-<-neg      :  r  Negative r  (r *_) Preserves _<_ ⟶ _>_
    
    pos⇒1/pos :  p (p>0 : Positive p)  Positive ((1/ p) {{pos⇒≢0 p p>0}})
    neg⇒1/neg :  p (p<0 : Negative p)  Negative ((1/ p) {{neg⇒≢0 p p<0}})
    
    *-distribʳ-⊓-nonNeg :  p  NonNegative p   q r  (q ⊓ r) * p ≃ (q * p) ⊓ (r * p)
    *-distribˡ-⊓-nonNeg :  p  NonNegative p   q r  p * (q ⊓ r) ≃ (p * q) ⊓ (p * r)
    *-distribˡ-⊔-nonNeg :  p  NonNegative p   q r  p * (q ⊔ r) ≃ (p * q) ⊔ (p * r)
    *-distribʳ-⊔-nonNeg :  p  NonNegative p   q r  (q ⊔ r) * p ≃ (q * p) ⊔ (r * p)
    *-distribˡ-⊔-nonPos :  p  NonPositive p   q r  p * (q ⊔ r) ≃ (p * q) ⊓ (p * r)
    *-distribʳ-⊔-nonPos :  p  NonPositive p   q r  (q ⊔ r) * p ≃ (q * p) ⊓ (r * p)
    *-distribˡ-⊓-nonPos :  p  NonPositive p   q r  p * (q ⊓ r) ≃ (p * q) ⊔ (p * r)
    *-distribʳ-⊓-nonPos :  p  NonPositive p   q r  (q ⊓ r) * p ≃ (q * p) ⊔ (r * p)
  • In Data.Rational.Properties:

    positive⁻¹ : Positive p → p > 0ℚ
    nonNegative⁻¹ : NonNegative p → p ≥ 0ℚ
    negative⁻¹ : Negative p → p < 0ℚ
    nonPositive⁻¹ : NonPositive p → p ≤ 0ℚ
    negative<positive : Negative p → Positive q → p < q
    nonNeg≢neg : ∀ p q → NonNegative p → Negative q → p ≢ q
    pos⇒nonNeg : ∀ p → Positive p → NonNegative p
    neg⇒nonPos : ∀ p → Negative p → NonPositive p
    nonNeg∧nonZero⇒pos : ∀ p → NonNegative p → NonZero p → Positive p
    
    *-cancelʳ-≤-pos    : ∀ r → Positive r → ∀ {p q} → p * r ≤ q * r → p ≤ q
    *-cancelˡ-≤-pos    : ∀ r → Positive r → ∀ {p q} → r * p ≤ r * q → p ≤ q
    *-cancelʳ-≤-neg    : ∀ r → Negative r → ∀ {p q} → p * r ≤ q * r → p ≥ q
    *-cancelˡ-≤-neg    : ∀ r → Negative r → ∀ {p q} → r * p ≤ r * q → p ≥ q
    *-cancelˡ-<-nonNeg : ∀ r → NonNegative r → ∀ {p q} → r * p < r * q → p < q
    *-cancelʳ-<-nonNeg : ∀ r → NonNegative r → ∀ {p q} → p * r < q * r → p < q
    *-cancelˡ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → r * p < r * q → p > q
    *-cancelʳ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → p * r < q * r → p > q
    *-monoʳ-≤-nonNeg   : ∀ r → NonNegative r → (_* r) Preserves _≤_ ⟶ _≤_
    *-monoˡ-≤-nonNeg   : ∀ r → NonNegative r → (r *_) Preserves _≤_ ⟶ _≤_
    *-monoʳ-≤-nonPos   : ∀ r → NonPositive r → (_* r) Preserves _≤_ ⟶ _≥_
    *-monoˡ-≤-nonPos   : ∀ r → NonPositive r → (r *_) Preserves _≤_ ⟶ _≥_
    *-monoˡ-<-pos      : ∀ r → Positive r → (_* r) Preserves _<_ ⟶ _<_
    *-monoʳ-<-pos      : ∀ r → Positive r → (r *_) Preserves _<_ ⟶ _<_
    *-monoˡ-<-neg      : ∀ r → Negative r → (_* r) Preserves _<_ ⟶ _>_
    *-monoʳ-<-neg      : ∀ r → Negative r → (r *_) Preserves _<_ ⟶ _>_
    
    *-distribˡ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊓ (p * r)
    *-distribʳ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊓ (r * p)
    *-distribˡ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊔ (p * r)
    *-distribʳ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊔ (r * p)
    *-distribˡ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊓ (p * r)
    *-distribʳ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊓ (r * p)
    *-distribˡ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊔ (p * r)
    *-distribʳ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊔ (r * p)
    
    pos⇒1/pos : ∀ p (p>0 : Positive p) → Positive ((1/ p) {{pos⇒≢0 p p>0}})
    neg⇒1/neg : ∀ p (p<0 : Negative p) → Negative ((1/ p) {{neg⇒≢0 p p<0}})
    1/pos⇒pos : ∀ p .{{_ : NonZero p}} → (1/p : Positive (1/ p)) → Positive p
    1/neg⇒neg : ∀ p .{{_ : NonZero p}} → (1/p : Negative (1/ p)) → Negative p
    
  • In Data.List.NonEmpty.Base:

    drop+ : List⁺ A  List⁺ A

    When drop+ping more than the size of the length of the list, the last element remains.

  • Added new proofs in Data.List.NonEmpty.Properties:

    length-++⁺ : length (xs ++⁺ ys) ≡ length xs + length ys
    length-++⁺-tail : length (xs ++⁺ ys) ≡ suc (length xs + length (tail ys))
    ++-++⁺ : (xs ++ ys) ++⁺ zs ≡ xs ++⁺ ys ++⁺ zs
    ++⁺-cancelˡ′ : xs ++⁺ zs ≡ ys ++⁺ zs′  List.length xs ≡ List.length ys  zs ≡ zs′
    ++⁺-cancelˡ : xs ++⁺ ys ≡ xs ++⁺ zs  ys ≡ zs
    drop+-++⁺ : drop+ (length xs) (xs ++⁺ ys) ≡ ys
    map-++⁺-commute : map f (xs ++⁺ ys) ≡ map f xs ++⁺ map f ys
    length-map : length (map f xs) ≡ length xs
    map-cong : f ≗ g  map f ≗ map g
    map-compose : map (g ∘ f) ≗ map g ∘ map f
  • Added new functions and proofs in Data.Nat.GeneralisedArithmetic:

    iterate : (A  A)  A  A
    iterate-is-fold :  (z : A) s m  fold z s m ≡ iterate s z m
  • Added new proofs to Function.Properties.Inverse:

    Inverse⇒Injection : Inverse S T  Injection S T
    ↔⇒↣ : A ↔ B  A ↣ B
  • Added a new isomorphism to Data.Fin.Properties:

    2↔Bool : Fin 2 ↔ Bool
  • Added new isomorphisms to Data.Unit.Polymorphic.Properties:

    ⊤↔⊤* : ⊤ {ℓ} ↔ ⊤*
  • Added new isomorphisms to Data.Vec.N-ary:

    Vec↔N-ary :  n  (Vec A n  B) ↔ N-ary n A B
  • Added new isomorphisms to Data.Vec.Recursive:

    lift↔ :  n  A ↔ B  A ^ n ↔ B ^ n
    Fin[m^n]↔Fin[m]^n :  m n  Fin (m ^ n) ↔ Fin m Vec.^ n
  • Added new functions to Function.Properties.Inverse:

    ↔-refl  : Reflexive _↔_
    ↔-sym   : Symmetric _↔_
    ↔-trans : Transitive _↔_
  • Added new isomorphisms to Function.Properties.Inverse:

    ↔-fun : A ↔ B  C ↔ D  (A  C) ↔ (B  D)
  • Added new function to Data.Fin.Properties

    i≤inject₁[j]⇒i≤1+j : i ≤ inject₁ j  i ≤ suc j
  • Added new function to Data.Fin.Induction

    <-weakInduction-startingFrom : P i   ( j  P (inject₁ j)  P (suc j))   {j}  j ≥ i  P j
  • Added new module to Data.Rational.Unnormalised.Properties

    module ≃-Reasoning = SetoidReasoning ≃-setoid
  • Added new functions to Data.Rational.Unnormalised.Properties

    0≠1 : 0ℚᵘ ≠ 1ℚᵘ
    ≃-≠-irreflexive : Irreflexive _≃_ _≠_
    ≠-symmetric : Symmetric _≠_
    ≠-cotransitive : Cotransitive _≠_
    ≠⇒invertible : p ≠ q  Invertible _≃_ 1ℚᵘ _*_ (p - q)
  • Added new structures to Data.Rational.Unnormalised.Properties

    +-*-isHeytingCommutativeRing : IsHeytingCommutativeRing _≃_ _≠_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ
    +-*-isHeytingField : IsHeytingField _≃_ _≠_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ
  • Added new bundles to Data.Rational.Unnormalised.Properties

    +-*-heytingCommutativeRing : HeytingCommutativeRing 0ℓ 0ℓ 0ℓ
    +-*-heytingField : HeytingField 0ℓ 0ℓ 0ℓ
  • Added new function to Data.Vec.Relation.Binary.Pointwise.Inductive

    cong-[_]≔ : Pointwise _∼_ xs ys  Pointwise _∼_ (xs [ i ]≔ p) (ys [ i ]≔ p)
  • Added new function to Data.Vec.Relation.Binary.Equality.Setoid

    map-[]≔ : map f (xs [ i ]≔ p) ≋ map f xs [ i ]≔ f p
  • Added new function to Data.List.Relation.Binary.Permutation.Propositional.Properties

    ↭-reverse : (xs : List A)  reverse xs ↭ xs
  • Added new functions to Algebra.Properties.CommutativeMonoid

    invertibleˡ⇒invertibleʳ : LeftInvertible _≈_ 0# _+_ x  RightInvertible _≈_ 0# _+_ x
    invertibleʳ⇒invertibleˡ : RightInvertible _≈_ 0# _+_ x  LeftInvertible _≈_ 0# _+_ x
    invertibleˡ⇒invertible  : LeftInvertible _≈_ 0# _+_ x  Invertible _≈_ 0# _+_ x
    invertibleʳ⇒invertible  : RightInvertible _≈_ 0# _+_ x  Invertible _≈_ 0# _+_ x
  • Added new functions to Algebra.Apartness.Bundles

    invertibleˡ⇒# : LeftInvertible _≈_ 1# _*_ (x - y)  x # y
    invertibleʳ⇒# : RightInvertible _≈_ 1# _*_ (x - y)  x # y
    x#0y#0→xy#0   : x # 0#  y # 0#  x * y # 0#
    #-sym         : Symmetric _#_
    #-congʳ       : x ≈ y  x # z  y # z
    #-congˡ       : y ≈ z  x # y  x # z
  • Added new proofs to Data.List.Relation.Binary.Sublist.Setoid.Properties and Data.List.Relation.Unary.Sorted.TotalOrder.Properties.

    ⊆-mergeˡ :  xs ys  xs ⊆ merge _≤?_ xs ys
    ⊆-mergeʳ :  xs ys  ys ⊆ merge _≤?_ xs ys
  • Added new proof to Induction.WellFounded

    Acc-resp-flip-≈ : _<_ Respectsʳ (flip _≈_)  (Acc _<_) Respects _≈_
  • Added new file Relation.Binary.Reasoning.Base.Apartness

    This is how to use it:

    _ : a # d
    _ = begin-apartness
      a ≈⟨ a≈b ⟩
      b #⟨ b#c ⟩
      c ≈⟨ c≈d ⟩
      d ∎