-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path40A05-LaneEmdenSystem3.tex
59 lines (54 loc) · 1.61 KB
/
40A05-LaneEmdenSystem3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{LaneEmdenSystem}
\pmcreated{2013-03-11 19:34:47}
\pmmodified{2013-03-11 19:34:47}
\pmowner{linor}{11198}
\pmmodifier{}{0}
\pmtitle{Lane-Emden System}
\pmrecord{1}{50127}
\pmprivacy{1}
\pmauthor{linor}{0}
\pmtype{Definition}
\endmetadata
%none for now
\begin{document}
\documentclass[12pt,leqno]{article}
\usepackage{amssymb}
\newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}}
\newcommand{\dk}{d\sigma_{\xi}}
\newcommand{\dx}{d\sigma_{x}}
\newcommand{\nd}{\frac{ \partial}{ \partial n}}
\newcommand{\ndk}{\disfrac{\textstyle \partial}{\textstyle \partial n_{ \xi}}}
\newcommand{\ndx}{\disfrac{\textstyle \partial}{\textstyle \partial n_{ x}}}
\newcommand{\ik}{\int_{ \Gamma}}
\newcommand{\ts}{\textstyle}
\begin{document}
Here is an example of Hamiltonian elliptic systems,
also called the Lane-Emden system,
%\be %\label{LE}
$$
(LE) \; \left\{
\begin{array}{ll}
- \Delta u = v^p & \, x \in\Omega,\nonumber\\
- \Delta v = u^q & \, x \in\Omega,\nonumber\\
u=v=0 & \, x \in \partial \Omega, \nonumber
\end{array}
\right.
%J(u)=\int_{\Omega}\Big[\frac{1}{2}|\nabla %u|^2-\frac{1}{q+1}|x|^r|u|^{q+1}\Big]dx
%\ee
$$
where $p,q>0,\Omega\subset {\mathbb R}^N (N\ge 1)$
is an open bounded domain. (LE) is called sublinear (superlinear)
if $pq<1 \; (pq>1)$.
The associated energy functional to (LE) is
$$
J(u,v)=\int_{\Omega}\nabla u \nabla v dx -
\int_{\Omega}(\frac{1}{q+1}u^{q+1}+\frac{1}{p+1}v^{p+1})dx.
$$
%Here are some numerical results to the Liouville-Gelfand problem
%when $\Omega$ is an annulus.
\end{document}
%%%%%
\end{document}