-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path40A05-ConvergenceOfASequenceWithFiniteUpcrossings.tex
65 lines (55 loc) · 1.89 KB
/
40A05-ConvergenceOfASequenceWithFiniteUpcrossings.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ConvergenceOfASequenceWithFiniteUpcrossings}
\pmcreated{2013-03-22 18:49:36}
\pmmodified{2013-03-22 18:49:36}
\pmowner{gel}{22282}
\pmmodifier{gel}{22282}
\pmtitle{convergence of a sequence with finite upcrossings}
\pmrecord{4}{41630}
\pmprivacy{1}
\pmauthor{gel}{22282}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40A05}
\pmclassification{msc}{60G17}
%\pmkeywords{upcrossing}
%\pmkeywords{downcrossing}
\pmrelated{UpcrossingsAndDowncrossings}
\endmetadata
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newtheorem*{theorem*}{Theorem}
\newtheorem*{lemma*}{Lemma}
\newtheorem*{corollary*}{Corollary}
\newtheorem*{definition*}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{definition}{Definition}
\begin{document}
\PMlinkescapeword{terms}
\PMlinkescapeword{numbers}
\PMlinkescapeword{limit}
\PMlinkescapeword{finite}
\PMlinkescapeword{theorem}
The following result characterizes convergence of a sequence in terms of finiteness of numbers of upcrossings.
\begin{theorem*}
A sequence $x_1,x_2,\ldots$ of real numbers converges to a limit in the extended real numbers if and only if the number of upcrossings $U[a,b]$ is finite for all $a<b$.
\end{theorem*}
Since the number of upcrossings $U[a,b]$ differs from the number of downcrossings $D[a,b]$ by at most one, the theorem can equivalently be stated in terms of the finiteness of $D[a,b]$.
%%%%%
%%%%%
\end{document}