-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path40-00-CesaroMean.tex
91 lines (85 loc) · 2.87 KB
/
40-00-CesaroMean.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CesaroMean}
\pmcreated{2013-03-22 12:29:54}
\pmmodified{2013-03-22 12:29:54}
\pmowner{mathcam}{2727}
\pmmodifier{mathcam}{2727}
\pmtitle{Ces\`aro mean}
\pmrecord{11}{32725}
\pmprivacy{1}
\pmauthor{mathcam}{2727}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40-00}
\pmclassification{msc}{40G05}
\pmsynonym{Cesaro mean}{CesaroMean}
\pmrelated{Sequence}
\pmrelated{CesaroSummability}
\pmrelated{StolzCesaroTheorem}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\md}{d}
\newcommand{\mv}[1]{\mathbf{#1}} % matrix or vector
\newcommand{\mvt}[1]{\mv{#1}^{\mathrm{T}}}
\newcommand{\mvi}[1]{\mv{#1}^{-1}}
\newcommand{\mderiv}[1]{\frac{\md}{\md {#1}}} %d/dx
\newcommand{\mnthderiv}[2]{\frac{\md^{#2}}{\md {#1}^{#2}}} %d^n/dx
\newcommand{\mpderiv}[1]{\frac{\partial}{\partial {#1}}} %partial d^n/dx
\newcommand{\mnthpderiv}[2]{\frac{\partial^{#2}}{\partial {#1}^{#2}}} %partial d^n/dx
\newcommand{\borel}{\mathfrak{B}}
\newcommand{\integers}{\mathbb{Z}}
\newcommand{\rationals}{\mathbb{Q}}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\complexes}{\mathbb{C}}
\newcommand{\naturals}{\mathbb{N}}
\newcommand{\defined}{:=}
\newcommand{\var}{\mathrm{var}}
\newcommand{\cov}{\mathrm{cov}}
\newcommand{\corr}{\mathrm{corr}}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\powerset}[1]{\mathcal{P}(#1)}
\newcommand{\bra}[1]{\langle#1 \vert}
\newcommand{\ket}[1]{\vert \hspace{1pt}#1\rangle}
\newcommand{\braket}[2]{\langle #1 \ket{#2}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\norm}[1]{\left|\left|#1\right|\right|}
\newcommand{\esssup}{\mathrm{ess\ sup}}
\newcommand{\Lspace}[1]{L^{#1}}
\newcommand{\Lone}{\Lspace{1}}
\newcommand{\Ltwo}{\Lspace{2}}
\newcommand{\Lp}{\Lspace{p}}
\newcommand{\Lq}{\Lspace{q}}
\newcommand{\Linf}{\Lspace{\infty}}
\newcommand{\sequence}[1]{\{#1\}}
\begin{document}
\paragraph{Definition}
Let $\sequence{a_n}_{n=0}^\infty$ be a sequence of real (or possibly complex numbers).
The {\bf Ces\`aro mean} of the sequence $\{a_n\}$ is the sequence $\{b_n\}_{n=0}^\infty$
with
\begin{equation}
b_n = \frac{1}{n+1} \sum_{i=0}^{n} a_i.
\end{equation}
\subsubsection{Properties}
\begin{enumerate}
\item
A key property of the Ces\`aro mean is that it has the same limit as the
original sequence (when this limit exists). In other words, if $\{a_n\}$ and
$\{b_n\}$ are as above, and $a_n \to a$, then $b_n \to a$.
In particular, if $\{a_n\}$ converges, then $\{b_n\}$ converges too.
\end{enumerate}
%%%%%
%%%%%
\end{document}