-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path00A20-Pathological.tex
98 lines (79 loc) · 2.74 KB
/
00A20-Pathological.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{Pathological}
\pmcreated{2013-03-22 14:41:56}
\pmmodified{2013-03-22 14:41:56}
\pmowner{CWoo}{3771}
\pmmodifier{CWoo}{3771}
\pmtitle{pathological}
\pmrecord{10}{36310}
\pmprivacy{1}
\pmauthor{CWoo}{3771}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{00A20}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{mathrsfs}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
\usepackage{bbm}
\newcommand{\Z}{\mathbbmss{Z}}
\newcommand{\C}{\mathbbmss{C}}
\newcommand{\R}{\mathbbmss{R}}
\newcommand{\Q}{\mathbbmss{Q}}
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\newtheorem{thm}{Theorem}
\newtheorem{defn}{Definition}
\newtheorem{prop}{Proposition}
\newtheorem{lemma}{Lemma}
\newtheorem{cor}{Corollary}
\begin{document}
In mathematics, a \emph{pathological object} is mathematical
object that has a highly unexpected \PMlinkescapetext{property}.
Pathological objects are typically percieved to, in some sense, be
badly behaving. On the other hand, they are perfectly properly
defined mathematical objects. Therefore this ``bad behaviour'' can
simply be seen as a contradiction with our intuitive
picture of how a certain object should behave.
\subsubsection*{Examples}
\begin{itemize}
\item A very famous pathological function is the
Weierstrass function, which is a continuous function
that is nowhere differentiable.
\item The Peano space filling curve. This pathological curve
maps the unit interval $[0,1]$ continuously onto $[0,1]\times [0,1]$.
\item The Cantor set. This is subset of the interval $[0,1]$
has the pathological property that it is uncountable
yet its measure is zero.
\item The Dirichlet's function from $\R$ to $\R$ is continuous at every
irrational point and discontinuous at every rational point.
\item Ackermann Function.
\end{itemize}
See also \cite{wiki}.
\begin{thebibliography}{9}
\bibitem{wiki}Wikipedia \PMlinkexternal{entry on pathological, mathematics}{http://en.wikipedia.org/wiki/Pathological (mathematics)}.
\end{thebibliography}
%%%%%
%%%%%
\end{document}