-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattempt3_success_drunk.py
117 lines (96 loc) · 4.14 KB
/
attempt3_success_drunk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import sys, math, pygame
from operator import itemgetter
class Point3D:
def __init__(self, x = 0, y = 0, z = 0):
self.x, self.y, self.z = float(x), float(y), float(z)
def rotateX(self, angle):
""" Rotates the point around the X axis by the given angle in degrees. """
rad = angle * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
y = self.y * cosa - self.z * sina
z = self.y * sina + self.y * cosa
return Point3D(self.x, y, z)
def rotateY(self, angle):
""" Rotates the point around the Y axis by the given angle in degrees. """
rad = angle * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
z = self.z * cosa - self.x * sina
x = self.z * sina + self.x * cosa
return Point3D(x, self.y, z)
def rotateZ(self, angle):
""" Rotates the point around the Z axis by the given angle in degrees. """
rad = angle * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
x = self.x * cosa - self.y * sina
y = self.x * sina + self.y * cosa
return Point3D(x, y, self.z)
def project(self, win_width, win_height, fov, viewer_distance):
""" Transforms this 3D point to 2D using a perspective projection. """
factor = fov / (viewer_distance + self.z)
x = self.x * factor + win_width / 2
y = -self.y * factor + win_height / 2
return Point3D(x, y, self.z)
class Simulation:
def __init__(self, win_width = 640, win_height = 480):
pygame.init()
self.screen = pygame.display.set_mode((win_width, win_height))
pygame.display.set_caption("Rotating Cube")
self.clock = pygame.time.Clock()
self.vertices = [
Point3D(-1,1,-1),
Point3D(1,1,-1),
Point3D(1,-1,-1),
Point3D(-1,-1,-1),
Point3D(-1,1,1),
Point3D(1,1,1),
Point3D(1,-1,1),
Point3D(-1,-1,1)
]
# Define the vertices that compose each of the 6 faces. These numbers are
# indices to the vertices list defined above.
self.faces = [(0,1,2,3),(1,5,6,2),(5,4,7,6),(4,0,3,7),(0,4,5,1),(3,2,6,7)]
# Define colors for each face
self.colors = [(255,0,255),(255,0,0),(0,255,0),(0,0,255),(0,255,255),(255,255,0)]
self.angle = 0
def run(self):
""" Main Loop """
while 1:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
self.clock.tick(50)
self.screen.fill((150,150,0))
# It will hold transformed vertices.
t = []
for v in self.vertices:
# Rotate the point around X axis, then around Y axis, and finally around Z axis.
r = v.rotateX(self.angle).rotateY(self.angle).rotateZ(self.angle)
# Transform the point from 3D to 2D
p = r.project(self.screen.get_width(), self.screen.get_height(), 256, 4)
# Put the point in the list of transformed vertices
t.append(p)
# Calculate the average Z values of each face.
avg_z = []
i = 0
for f in self.faces:
z = (t[f[0]].z + t[f[1]].z + t[f[2]].z + t[f[3]].z) / 4.0
avg_z.append([i,z])
i = i + 1
# Draw the faces using the Painter's algorithm:
# Distant faces are drawn before the closer ones.
for tmp in sorted(avg_z,key=itemgetter(1),reverse=True):
face_index = tmp[0]
f = self.faces[face_index]
pointlist = [(t[f[0]].x, t[f[0]].y), (t[f[1]].x, t[f[1]].y),
(t[f[1]].x, t[f[1]].y), (t[f[2]].x, t[f[2]].y),
(t[f[2]].x, t[f[2]].y), (t[f[3]].x, t[f[3]].y),
(t[f[3]].x, t[f[3]].y), (t[f[0]].x, t[f[0]].y)]
pygame.draw.polygon(self.screen,self.colors[face_index],pointlist)
self.angle += 1
pygame.display.flip()
x = Simulation()
x.run()