-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
55 lines (45 loc) · 2.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from torch import nn
import numpy as np
from tqdm import tqdm
def bertSentenceEmb(args, doc_to_sent, sent_repr):
num_docs = len(doc_to_sent)
doc_lengths = np.zeros(num_docs, dtype=int)
padded_sent_repr = np.zeros((num_docs, args.max_sent, args.emb_dim))
sentence_mask = np.ones((num_docs, args.max_sent))
trimmed = 0
for doc_id in tqdm(np.arange(num_docs)):
start_sent = doc_to_sent[doc_id][0]
end_sent = doc_to_sent[doc_id][-1]
num_sent = end_sent - start_sent + 1
if num_sent > args.max_sent:
end_sent = start_sent + args.max_sent - 1
num_sent = args.max_sent
trimmed += 1
embeddings = sent_repr[start_sent:end_sent+1]
# save the number of sentences in each document
doc_lengths[doc_id] = int(num_sent)
# Add padded sentences
padded_sent_repr[doc_id, :embeddings.shape[0], :] = embeddings
# Update mask so that padded sentences are not included in attention computation
sentence_mask[doc_id, :num_sent] = 0
print(f"Trimmed Documents: {trimmed}")
return padded_sent_repr, doc_lengths, sentence_mask
class MEGClassModel(nn.Module):
def __init__(self, D_in, D_hidden, head, dropout=0.0):
super(MEGClassModel, self).__init__()
self.mha = nn.MultiheadAttention(embed_dim=D_in, num_heads=head, dropout=dropout, batch_first=True)
self.layernorm = nn.LayerNorm(D_in)
self.embd = nn.Linear(D_in,D_hidden)
self.attention = nn.Linear(D_hidden,1)
def forward(self, x_org, mask=None):
x, mha_w = self.mha(x_org,x_org,x_org,key_padding_mask=mask)
x = self.layernorm(x_org+x)
x = self.embd(x)
x = torch.tanh(x) # contextualized sentences
a = self.attention(x)
if mask is not None:
a = a.masked_fill_((mask == 1).unsqueeze(-1), float('-inf'))
w = torch.softmax(a, dim=1) # alpha_k
o = torch.matmul(w.permute(0,2,1), x) #doc
return o, mha_w, w, x # contextualized doc, multi-head attention weights, alpha_k, contextualized sent