File tree Expand file tree Collapse file tree 3 files changed +8
-8
lines changed
main/scala/org/apache/spark/ml
test/scala/org/apache/spark/ml/classification Expand file tree Collapse file tree 3 files changed +8
-8
lines changed Original file line number Diff line number Diff line change @@ -290,7 +290,7 @@ case object ExponentialLoss
290290
291291}
292292
293- case object BinomialLoss extends GBMClassificationLoss with GBMScalarLoss with HasScalarHessian {
293+ case object BernoulliLoss extends GBMClassificationLoss with GBMScalarLoss with HasScalarHessian {
294294
295295 override def dim : Int = 1
296296
Original file line number Diff line number Diff line change @@ -76,7 +76,7 @@ private[ml] trait GBMClassifierParams extends GBMParams with HasParallelism {
7676
7777 /**
7878 * Loss function which GBM tries to minimize. (case-insensitive) Supported: "logloss",
79- * "exponential", "binomial ". (default = logloss)
79+ * "exponential", "bernoulli ". (default = logloss)
8080 *
8181 * @group param
8282 */
@@ -100,7 +100,7 @@ private[ml] trait GBMClassifierParams extends GBMParams with HasParallelism {
100100private [ml] object GBMClassifierParams {
101101
102102 final val supportedLossTypes : Array [String ] =
103- Array (" logloss" , " exponential" , " binomial " ).map(_.toLowerCase(Locale .ROOT ))
103+ Array (" logloss" , " exponential" , " bernoulli " ).map(_.toLowerCase(Locale .ROOT ))
104104
105105 final val supportedInitStrategy : Array [String ] =
106106 Array (" uniform" , " prior" ).map(_.toLowerCase(Locale .ROOT ))
@@ -109,7 +109,7 @@ private[ml] object GBMClassifierParams {
109109 loss match {
110110 case " logloss" => LogLoss (numClasses)
111111 case " exponential" => ExponentialLoss
112- case " binomial " => BinomialLoss
112+ case " bernoulli " => BernoulliLoss
113113 case _ => throw new RuntimeException (s " GBMClassifier was given bad loss type: $loss" )
114114 }
115115
Original file line number Diff line number Diff line change @@ -86,7 +86,7 @@ class GBMClassifierSuite extends AnyFunSuite with BeforeAndAfterAll {
8686
8787 }
8888
89- test(" gbm exponential and binomial binary classification is better than baselines" ) {
89+ test(" gbm exponential and bernoulli binary classification is better than baselines" ) {
9090
9191 val data =
9292 spark.read
@@ -110,7 +110,7 @@ class GBMClassifierSuite extends AnyFunSuite with BeforeAndAfterAll {
110110 .setBaseLearner(dtr)
111111 .setNumBaseLearners(numBaseLearners)
112112 .setLearningRate(1.0 )
113- .setLoss(" binomial " )
113+ .setLoss(" bernoulli " )
114114 .setUpdates(" newton" )
115115 val dtc = new DecisionTreeClassifier ()
116116 .setMaxDepth(maxDepth)
@@ -204,15 +204,15 @@ class GBMClassifierSuite extends AnyFunSuite with BeforeAndAfterAll {
204204 val gbmrWithVal = new GBMClassifier ()
205205 .setBaseLearner(dtr)
206206 .setNumBaseLearners(10 )
207- .setLoss(" binomial " )
207+ .setLoss(" bernoulli " )
208208 .setUpdates(" gradient" )
209209 .setValidationIndicatorCol(" validation" )
210210 .setNumRounds(1 )
211211
212212 val gbmrNoVal = new GBMClassifier ()
213213 .setBaseLearner(dtr)
214214 .setNumBaseLearners(10 )
215- .setLoss(" binomial " )
215+ .setLoss(" bernoulli " )
216216 .setUpdates(" gradient" )
217217
218218 val mce = new MulticlassClassificationEvaluator ().setMetricName(" logLoss" )
You can’t perform that action at this time.
0 commit comments