You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
.setBaseLearner(newDecisionTreeClassifier()) //Base learner used by the meta-estimator.
23
+
.setNumBaseLearners(10) //Number of base learners.
24
+
.setLoss("exponential") //Loss function used for weight computation.
25
+
.setValidationIndicatorCol("val") //Column name that contains true or false for the early stop data set.
26
+
.setTol(1E-3) //Tolerance for optimized step size and gain in loss on early stop set.
27
+
.setNumRound(8) //Number of rounds to wait for the loss on early stop set to decrease.
28
+
```
29
+
30
+
## References
31
+
32
+
* [[1](https://pdf.sciencedirectassets.com/272574/1-s2.0-S0022000000X00384/1-s2.0-S002200009791504X/main.pdf?X-Amz-Security-Token=AgoJb3JpZ2luX2VjEKP%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCID7xdi4RVOyBg2JyJaKf%2Bo1b0VB2lLHjOH7N4qiYc1zjAiEA1jYOFh6CjJQZmZ3QcaiDrtaD1P9fYiZkPZM6gR%2B%2FKF8q2gMIXBACGgwwNTkwMDM1NDY4NjUiDAVj5twFPKo1W86Ylyq3A1nD9LiuPFB7iWNzcbJyfjY0ZQjoHwoUo4yrPs9kyH3qntJCFhwM8v1I3278TKFu%2BAtZU%2BJP3OxpJeeXYZ5MPe5g8eYKuwDpdT9mubV3aWr2Vw3EjEkHrVBFE1%2B%2B8Ds3dc9mYqcV87AJCns5uL9mQbh3JTFGuuubYMLkQssmVky%2B3SUvOpW%2Bnl5BTq%2FPqaShPUVW7ky1CLk8%2B3INirdGvWsTeU5GZJRiJqpWYpAS9Qa0Km5BkIPDSHKh5u53tTIUXPqBW6P3MXr2k0XLqpFEIi0%2F8BHDaP%2FcI5EsMvsCFZDsZZAlXZn2Vm8MNZUOnRhOC%2BE2Q1R11o3hly2LGDfz74IihRvXDY40kHvfEwNmeK8y9p7j2NTVUeiNvdjdXpByoEJkmJduPiBVpsQ3SMM3Q6dIm%2BNVzJwMJyQioLcKI7kyC%2FvG6hF9z%2FGRAu7K7hRcbdW5XX2pTES9A5AK9LdeGxvhFThiGfODJaCTPwccTn%2Fw2gDP23uETJ0ldmaqRUJo6TB5LqgeoE6Ll0BwWRJSeUUHybTcVfbFmf6S0ItX42eM0%2Fv7qMsIIWU%2FUV6QRLpth7InXxm7KbUwqurI6wU6tAGcV%2FHkqjW5CYxpXREYK2hHWz12ZKxPV13aBjDyEjTvd85BW0VPpmOixpSlBdV67AnrWSBo1Coo0DNkscAwWepWNDTbZfwHaCd6q7pAyb0RvuD4URqwi2WDTahX9bRK%2BNTAA7vpnfSmv0qLqir02wSLYIP%2Fzf%2FXlhAKyb%2BPTaPhY1Y2JGWkqlykiOMsG2oP42c9LKEVDYkn7y%2Bv62TwYYGQylb%2By1xVnCY3cm9rAFgEGO%2BSWk4%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20190906T114916Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY4UOJFHA3%2F20190906%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=8bfc5bbd29b405a4b4d174cb515bdc2621ac4246c4e30f9a108b143169c0c6c2&hash=d85f9856ba204a5941472cb769535e404f48935a697c8f25a9d241024018527f&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S002200009791504X&tid=spdf-9461bd1f-a6a2-4a1d-9bb1-a6ada11fbdc2&sid=f588c56f21cb124fa58b550402b796a79eb7gxrqb&type=client)] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
33
+
*[[2](https://web.stanford.edu/~hastie/Papers/samme.pdf)] Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface, 2(3), 349-360.
34
+
*[[3](https://pdfs.semanticscholar.org/8d49/e2dedb817f2c3330e74b63c5fc86d2399ce3.pdf)] Drucker, H. (1997, July). Improving regressors using boosting techniques. In ICML (Vol. 97, pp. 107-115).
Copy file name to clipboardExpand all lines: docs/gbm.md
+35-1Lines changed: 35 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -3,4 +3,38 @@ id: gbm
3
3
title: GBM
4
4
---
5
5
6
-
Documentation Coming Soon.
6
+
God Jerome H. Friedman enlightened mankind with GBM (Gradient Boosting Machines) in the beginning of the third millennium.
7
+
8
+
The first of his ten commandments was named : Greedy Function Approximation: A Gradient Boosting Machine [[1](#references)], introducing a meta algorithm that was aimed to do gradient descent in function space. In the end you were kinda doing it in error space, but the heuristic was god sent.
9
+
10
+
The second commandment was : Stochastic Gradient Boosting [[2](#references)] introducing randomness in each iteration by using SubBags.
11
+
12
+
PS : It works for multi-class Classification.
13
+
PPS : Early stop is implemented with a N Round variant.
14
+
15
+
## Parameters
16
+
17
+
The parameters available for GBM are related to the base framework, the stochastic version and early stop.
.setBaseLearner(newDecisionTreeClassifier()) //Base learner used by the meta-estimator.
24
+
.setNumBaseLearners(10) //Number of base learners.
25
+
.setLearningRate(0.1) //Shrinkage parameter.
26
+
.setSampleRatio(0.8) //Ratio sampling of exemples.
27
+
.setReplacement(true) //Exemples drawn with replacement or not.
28
+
.setSubspaceRatio(0.8) //Ratio sampling of features.
29
+
.setOptimizedWeights(true) //Line search the best step size or use 1 instead.
30
+
.setLoss("squared") //Loss function used for residuals and optimized step size.
31
+
.setAlpha(0.5) //Extra parameter for certain loss functions as quantile or huber.
32
+
.setValidationIndicatorCol("val") //Column name that contains true or false for the early stop data set.
33
+
.setTol(1E-3) //Tolerance for optimized step size and gain in loss on early stop set.
34
+
.setNumRound(8) //Number of rounds to wait for the loss on early stop set to decrease.
35
+
```
36
+
37
+
## References
38
+
39
+
*[[1](https://statweb.stanford.edu/~jhf/ftp/trebst.pdf)] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
40
+
*[[2](https://astro.temple.edu/~msobel/courses_files/StochasticBoosting(gradient).pdf)] Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367-378.
0 commit comments