-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathdetect_facemarks_by_dnn_centerface.php
87 lines (66 loc) · 2.88 KB
/
detect_facemarks_by_dnn_centerface.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
<?php
use CV\Scalar, CV\Size;
$net = \CV\DNN\readNetFromONNX('models/centerface/centerface.onnx');
$src = \CV\imread("images/faces.jpg");
$img_w_new = ceil($src->cols / 32) * 32;
$img_h_new = ceil($src->rows / 32) * 32;
$scale_w = $img_w_new / $src->cols;
$scale_h = $img_h_new / $src->rows;
//var_export([$scale_w, $scale_h]);
$blob = \CV\DNN\blobFromImage($src, 1, new Size($img_w_new, $img_h_new), new Scalar(), true, false);
$net->setInput($blob);
[$heatmapMat, $scaleMat, $offsetMat, $landmarksMat] = $net->forwardMulti(['537', '538', '539', '540']);
$thresh = 0.7;
$h = $heatmapMat->shape[2];
$w = $heatmapMat->shape[3];
$l = $landmarksMat->shape[1];
function landmarks($landmarksMat, $l, $i, $j, $x1, $y1, $s0, $s1) {
$landmarks = [];
for ($k = 0; $k < $l/2; $k++) {
$landmarks[] = [$landmarksMat->atIdx([0,$k*2+1,$i,$j])*$s1+$x1, $landmarksMat->atIdx([0,$k*2+0,$i,$j])*$s0+$y1];
}
return $landmarks;
}
$faces = [];
for ($i = 0; $i < $h; $i++) {
for ($j = 0; $j < $w; $j++) {
$confidence = $heatmapMat->atIdx([0,0,$i,$j]);
if ($confidence > $thresh) {//var_export($heatmapMat->atIdx([0,0,$i,$j]));echo "\n";
//var_export($scaleMat->atIdx([0,0,$i,$j]));echo "\n";
//var_export([$i, $j]);
$s0 = exp($scaleMat->atIdx([0,0,$i,$j])) * 4;
$s1 = exp($scaleMat->atIdx([0,1,$i,$j])) * 4;
$o0 = $offsetMat->atIdx([0,0,$i,$j]);
$o1 = $offsetMat->atIdx([0,1,$i,$j]);
$x1 = max(0, ($j + $o1 + 0.5) * 4 - $s1 / 2);
$y1 = max(0, ($i + $o0 + 0.5) * 4 - $s0 / 2);
$x1 = min($x1, $src->cols);
$y1 = min($y1, $src->rows);
$x2 = $x1 + $s1;
$y2 = $y1 + $s0;
if ($faces) { // checking for intersection
foreach ($faces as $id => [$existX1, $existY1, $existX2, $existY2, $existConf]) {
if ($existX1 < $x2 && $existY1 < $y2 && $existX2 > $x1 && $existY2 > $y1) {
if ($confidence > $existConf) {//echo 1;
$faces[$id] = [$x1, $y1, $x2, $y2, $confidence, landmarks($landmarksMat, $l, $i, $j, $x1, $y1, $s0, $s1)];
}
continue 2;
}
}
}
$faces[]= [$x1, $y1, $x2, $y2, $confidence, landmarks($landmarksMat, $l, $i, $j, $x1, $y1, $s0, $s1)];
}
}
}
//var_export($faces);
$color = new Scalar(0, 0, 255);
foreach ($faces as [$x1, $y1, $x2, $y2, $conf, $landmarks]) {
foreach ($landmarks as $point) {
$point = new \CV\Point($point[0]/$scale_w, $point[1]/$scale_h);
\CV\circle($src, $point, 2, $color, 2);
\CV\rectangle($src, $x1/$scale_w, $y1/$scale_h, $x2/$scale_w, $y2/$scale_h, $color, 2);
}
}
$faces = [];
$scalar = new Scalar(0, 0, 255);
\CV\imwrite("results/_detect_facemarks_by_dnn_centerface.jpg", $src);