-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgeom3.py
295 lines (232 loc) · 9.41 KB
/
geom3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
"""Geometry module for use with COSC363, 2009.
Defines Vector3, Point3, Line3, and Ray3 classes for
3D geometry. """
from math import sqrt
epsilon = 1.e-10 # Default epsilon for equality testing of points and vectors
class GeomException(Exception):
def __init__(self, message = None):
Exception.__init__(self, message)
#================================================================
#
# Point3 class
#
#================================================================
class Point3(object):
"""Represents a Point in 3-space with coordinates x, y, z.
Note the distinction between vectors and points.
Points cannot, for example, be added or scaled."""
def __init__(self, x, y=None, z=None):
"""Constructor takes a Point3, a Vector3, a 3-tuple or
a 3-list or any other 3-sequence as a sole argument, or
values x, y and z."""
if y is None and z is None:
self.x, self.y, self.z = x # Unpack a 3-sequence into coords
else:
self.x, self.y, self.z = x, y, z # Constructor taking x, y, z
def __sub__(self, other):
"""P1 - P2 returns a vector. P - v returns a point"""
if isinstance(other, Point3):
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
elif isinstance(other, Vector3):
return Point3(self.x - other.dx, self.y - other.dy, self.z - other.dz)
else:
return NotImplemented
def __add__(self, other):
"""P + v is P translated by v"""
if isinstance(other, Vector3):
return Point3(self.x + other.dx, self.y + other.dy, self.z + other.dz)
else:
return NotImplemented
def __iter__(self):
"""Iterator over the coordinates"""
return [self.x, self.y, self.z].__iter__()
def __eq__(self, other):
"""Equality of points is equality of all coordinates to within
epsilon (defaults to 1.e-10)."""
return (abs(self.x - other.x) < epsilon and
abs(self.y - other.y) < epsilon and
abs(self.z - other.z) < epsilon)
def __ne__(self, other):
"""Inequality of points is inequality of any coordinates"""
return not self.__eq__(other)
def __getitem__(self, i):
"""P[i] is x, y, z for i in 0, 1, 2 resp."""
return [self.x, self.y, self.z][i]
def __str__(self):
"""String representation of a point"""
return ("(%.3f,%.3f,%.3f)") % (self.x, self.y, self.z)
def __repr__(self):
"""String representation including class"""
return "Point3" + str(self)
#================================================================
#
# Vector3 class
#
#================================================================
class Vector3(object):
"""Represents a vector in 3-space with coordinates dx, dy, dz."""
def __init__(self, dx, dy=None, dz=None):
"""Constructor takes a Point3, a Vector3, a 3-tuple or
a 3-list or any other 3-sequence as a sole argument, or
values dx, dy and dz."""
if dy is None and dz is None:
self.dx, self.dy, self.dz = dx # Constructor taking pt, vec, list or tuple as arg
else:
self.dx, self.dy, self.dz = dx, dy, dz # Constructor taking x, y, z
def __sub__(self, other):
"""Vector difference"""
return Vector3(self.dx-other.dx, self.dy-other.dy, self.dz-other.dz)
def __add__(self, other):
"""Vector sum"""
return Vector3(self.dx+other.dx, self.dy+other.dy, self.dz+other.dz)
def __mul__(self, scale):
"""v * r for r a float is scaling of vector v by r"""
return Vector3(scale*self.dx, scale*self.dy, scale*self.dz)
def __rmul__(self, scale):
"""r * v for r a float is scaling of vector v by r"""
return self.__mul__(scale)
def __div__(self, scale):
"""Division of a vector by a float r is scaling by (1/r)"""
return self.__mul__(1.0/scale)
def __neg__(self):
"""Negation of a vector is negation of all its coordinates"""
return Vector3(-self.dx, -self.dy, -self.dz)
def __iter__(self):
"""Iterator over coordinates dx, dy, dz in turn"""
return [self.dx, self.dy, self.dz].__iter__()
def __getitem__(self, i):
"""v[i] is dx, dy, dz for i in 0,1,2 resp"""
return [self.dx, self.dy, self.dz][i]
def __eq__(self, other):
"""Equality of vectors is equality of all coordinates to within
epsilon (defaults to 1.e-10)."""
return (abs(self.dx - other.dx) < epsilon and
abs(self.dy - other.dy) < epsilon and
abs(self.dz - other.dz) < epsilon)
def __ne__(self, other):
"""Inequality of vectors is inequality of any coordinates"""
return not self.__eq__(other)
def dot(self, other):
"""The usual dot product"""
return self.dx*other.dx + self.dy*other.dy + self.dz*other.dz
def cross(self, other):
"""The usual cross product"""
return Vector3(self.dy * other.dz - self.dz * other.dy,
self.dz * other.dx - self.dx * other.dz,
self.dx * other.dy - self.dy * other.dx)
def norm(self):
"""A normalised version of self"""
return self/length(self)
def __str__(self):
"""Minimal string representation in parentheses"""
return ("(%.3f,%.3f,%.3f)") % (self.dx, self.dy, self.dz)
def __repr__(self):
"""String representation with class included"""
return "Vector3" + str(self)
#================================================================
#
# Line class
#
#================================================================
class Line3(object):
"""A line is defined by two points in space"""
def __init__(self, p1, p2):
"""Constructor takes two points (or anything convertible to Point3)"""
self.p1 = Point3(p1)
self.p2 = Point3(p2)
def pos(self, alpha):
"""The position p1 + alpha*(p2-p1) on the line"""
return self.p1 + alpha * (self.p2-self.p1)
def repr(self):
"""String representation of a line"""
return "Line3(%.3g, %.3g)" % (p1, p2)
#================================================================
#
# Ray class
#
#================================================================
class Ray3(object):
"""A ray is a directed line, defined by a start point and a direction"""
def __init__(self, start, dir):
"""Constructor takes a start point (or something convertible to point) and
a direction vector (which need not be normalised)."""
self.start = Point3(start) # Ensure start point represented as a Point3
self.dir = unit(Vector3(dir)) # Direction vector
def pos(self, t):
"""A point on a ray is start + t*dir for t positive."""
if t >= 0:
return self.start + t * self.dir
else:
raise GeomException("Attempt to obtain point not on ray")
def __repr__(self):
return "Ray3(%s,%s)" % (str(self.start), str(self.dir))
#================================================================
#
# Global functions on points and vectors
#
#================================================================
def dot(v1, v2):
"""Dot product of two vectors"""
return v1.dot(v2)
def cross(v1, v2):
"""Cross product of two vectors"""
return v1.cross(v2)
def length(v):
"""Length of vector"""
return sqrt(v.dot(v))
def unit(v):
"""A unit vector in the direction of v"""
return v / length(v)
#================================================================
#
# Simple unit tests if module is run as main
#
#================================================================
if __name__ == '__main__':
# Simple tests of all basic vector operations
v1 = Vector3(1,2,3)
v2 = Vector3(3,2,1)
assert Vector3((1,2,3)) == v1
assert Vector3([1,2,3]) == v1
assert Vector3(Point3(1,2,3)) == v1
assert v1 + v2 == Vector3(4,4,4)
assert v1 - v2 == Vector3(-2,0,2)
assert v1 * 3 == Vector3(3,6,9)
assert 3 * v1 == Vector3(3,6,9)
assert v1/2.0 == Vector3(0.5,1,1.5)
assert -v1 == Vector3(-1,-2,-3)
assert v1[0] == 1 and v1[1] == 2 and v1[2] == 3
assert list(v1) == [1,2,3]
assert str(v1) == "(1.000,2.000,3.000)"
assert eval(repr(v1)) == v1
assert v1.dot(v2) == 10
assert v1.dot(v2) == dot(v1,v2)
assert v1.cross(v2) == Vector3(-4,8,-4)
assert length(unit(Vector3(2,3,4))) == 1.0
assert length(Vector3(2,3,4).norm()) == 1.0
# Tests on points
p1 = Point3(2,4,6)
p2 = Point3(4,7,3)
assert Point3((2,4,6)) == p1
assert Point3([2,4,6]) == p1
assert Point3(Vector3(2,4,6)) == p1
assert [p1[i] for i in range(3)] == [2,4,6]
assert p1-p2 == Vector3(-2,-3,3)
assert p1+v1 == Point3(3,6,9)
assert str(p1) == "(2.000,4.000,6.000)"
assert eval(repr(p1)) == p1
try:
p1 + p2
assert False
except TypeError: pass
try:
3 * p1
assert False
except TypeError: pass
# Some simple and arbitrary tests on lines and rays
xRay = Ray3(Point3(0,0,0), Vector3(1,0,0))
yRay = Ray3((0,0,0), (0,1,0))
zRay = Ray3((0,0,0), (0,0,1))
assert xRay.pos(1.0) == Point3(1,0,0)
assert xRay.pos(2) == Point3(2,0,0)
print "Passed all tests"