forked from oroszl/statfiz-gyak
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04-Nagykanonikus_sokasag.lyx
1164 lines (879 loc) · 25.8 KB
/
04-Nagykanonikus_sokasag.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\master master.lyx
\begin_modules
theorems-std
\end_modules
\maintain_unincluded_children false
\language magyar
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 1
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\boxbgcolor #55aaff
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language polish
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Part
Nagykanonikus és egyéb sokaságok
\end_layout
\begin_layout Standard
\begin_inset Box Shaded
position "t"
hor_pos "c"
has_inner_box 0
inner_pos "t"
use_parbox 0
use_makebox 0
width ""
special "none"
height "1in"
height_special "totalheight"
status open
\begin_layout Plain Layout
\series bold
Nagykanonikus állapotösszeg:
\end_layout
\begin_layout Plain Layout
\begin_inset Formula
\begin{eqnarray}
\mathcal{Z} & = & \sum_{N=0}^{\infty}\sum_{n}\mathrm{e}^{-\beta E_{n}(N)-\alpha N}\label{eq:nagykan-Z}\\
\mathcal{Z} & = & \sum_{N=0}^{\infty}\int\mathrm{d}\Gamma\mathrm{e}^{-\beta H(p,q,N)-\alpha N}
\end{eqnarray}
\end_inset
\begin_inset Formula
\begin{equation}
\alpha=-\frac{\mu}{k_{\mathrm{B}}T}
\end{equation}
\end_inset
\end_layout
\begin_layout Plain Layout
\series bold
Nagykanonikus potenciál:
\begin_inset Formula
\begin{equation}
\Phi(T,V,\mu)=-k_{\mathrm{B}}T\ln\mathcal{Z}\label{eq:nagykan-potencial-Z}
\end{equation}
\end_inset
\begin_inset Formula
\begin{eqnarray}
\Phi(T,V,\mu) & = & E-TS-\mu N\label{eq:nagykan-potencial}\\
& = & -pV\label{eq:nagykan-gibbs-duhem}
\end{eqnarray}
\end_inset
\begin_inset Formula
\begin{equation}
\mathrm{d}\Phi=-S\mathrm{d}T-p\mathrm{d}V-N\mathrm{d}\mu\label{eq:nagykan-potencial-diff}
\end{equation}
\end_inset
\end_layout
\begin_layout Plain Layout
\series bold
Részecskeszám (átlagos):
\begin_inset Formula
\begin{eqnarray}
\left\langle N\right\rangle & = & -\partial_{\alpha}\left.\mathcal{\ln}\mathcal{Z}\right|_{V,\beta}\label{eq:nagykan-reszecskeszam}\\
\left\langle \Delta N^{2}\right\rangle & = & -\partial_{\alpha}\left.\left\langle N\right\rangle \right|_{V,\beta}\label{eq:nagykan-reszecskeszam-szoras}
\end{eqnarray}
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Óriás abszorbens molekula ideális gázban
\end_layout
\begin_layout Standard
Vizsgáljunk egy óriás abszorbens molekula és egy adott
\begin_inset Formula $p$
\end_inset
nyomású és
\begin_inset Formula $T$
\end_inset
hőmérsékletű ideális gáz kölcsönhatását.
A molekula legfeljebb két atomot tud megkötni a gázmolekulákból.
Ha egy atom van megkötve a molekulán akkor a kötési energia
\begin_inset Formula $-u$
\end_inset
ha két atom van megkötve a molekulán akkor a kötési energia
\begin_inset Formula $-2v$
\end_inset
.
\end_layout
\begin_layout Standard
Határozzuk meg hogy átlagosan hány részecske van a molekulára kötve az ideális
gáz nyomásának és hőmérsékletének függvényében.
Vizsgáljuk a
\begin_inset Formula $p\rightarrow0$
\end_inset
és
\begin_inset Formula $p\rightarrow\infty$
\end_inset
határeseteket!
\end_layout
\begin_layout Standard
Határozzuk meg először is a gáz molekula nagykanonikus állapotösszegét!
Az
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:orias-molekula-terkep"
\end_inset
.
táblázat segítségével az állapotösszeg
\end_layout
\begin_layout Standard
\begin_inset Float table
placement H
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="3" columns="4">
<features rotate="0" tabularvalignment="middle">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
energia
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $0$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $-u$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $-2v$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
részecskeszám
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $0$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $1$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $2$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
degeneráció
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $0$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $2$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $1$
\end_inset
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Abszorbens molekula energia-részecskeszám-degeneráció térképe
\begin_inset CommandInset label
LatexCommand label
name "tab:orias-molekula-terkep"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
\mathcal{Z}_{mol}=\overbrace{1}^{N=0}+\underbrace{2\mathrm{e}^{-\beta\left(-u-\mu\right)}}_{N=1}+\overbrace{\mathrm{e}^{-\beta\left(-2v-\mu2\right)}}^{N=2}
\end{equation}
\end_inset
Melyből a nagykanonikus potenciál
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:nagykan-potencial-Z"
\end_inset
segítségével
\begin_inset Formula
\begin{equation}
\Phi=-k_{\mathrm{B}}T\ln\mathcal{Z}_{mol},
\end{equation}
\end_inset
az átlagos abszorbeált gázmolekulák számára
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:nagykan-reszecskeszam"
\end_inset
alapján kapjuk, hogy
\begin_inset Formula
\begin{equation}
\left\langle N_{\text{absz}}\right\rangle =-\partial_{\mu}\Phi=\frac{2\mathrm{e}^{\beta\left(u+\mu\right)}+2\mathrm{e}^{2\beta\left(v+\mu\right)}}{1+2\mathrm{e}^{\beta\left(u+\mu\right)}+\mathrm{e}^{2\beta\left(v+\mu\right)}}.\label{eq:orias-molekula-absz-atom-szam}
\end{equation}
\end_inset
A
\begin_inset Formula $\mu$
\end_inset
kémiai potenciált itt a környezet, azaz az ideális gáz határozza meg (intenzív
paraméterek egyenlősége egyensúlyban)! Vegyük észre hogy a releváns meghatároza
ndó paraméter
\begin_inset Formula $\mathrm{e}^{\beta\mu}$
\end_inset
.
Vegyük észre, hogy azonos részecskékből álló rendszer nagykanonikus állapotössz
ege
\begin_inset Formula $\mathcal{Z}$
\end_inset
és egy alrendszer kanonikus állapotösszege
\begin_inset Formula $Z_{1}$
\end_inset
között fennáll az alábbi egyszerű összefüggés:
\begin_inset Box Shaded
position "t"
hor_pos "c"
has_inner_box 0
inner_pos "t"
use_parbox 0
use_makebox 0
width ""
special "none"
height "1in"
height_special "totalheight"
status open
\begin_layout Plain Layout
\begin_inset Formula
\begin{equation}
\mathcal{Z}=\sum_{N=0}^{\infty}\frac{1}{N!}Z_{1}^{N}\mathrm{e}^{\beta\mu N}=\mathrm{e}^{\left(Z_{1}\mathrm{e}^{\beta\mu}\right)},
\end{equation}
\end_inset
\end_layout
\end_inset
ahol az exponenciális függvény Taylor-sorát felismerve értékeltük ki az
összegzést.
Ideális gáz esetén tehát kapjuk hogy
\begin_inset Formula
\begin{equation}
\mathcal{Z}_{\text{id.gáz}}=\mathrm{e}^{\left(Z_{1}\mathrm{e}^{\beta\mu}\right)},
\end{equation}
\end_inset
ahol
\begin_inset Formula
\begin{equation}
Z_{1}=\frac{1}{h^{3}}\int\mathrm{d}^{3}p\mathrm{d}^{3}r\mathrm{e}^{-\beta\frac{p^{2}}{2m}}=V\left(\frac{2\pi m}{\beta h}\right)^{3/2}.
\end{equation}
\end_inset
egy gáz atom kanonikus állapotösszege.
A gázfázisban lévő atomok átlagos száma tehát
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:nagykan-reszecskeszam"
\end_inset
segítségével
\begin_inset Formula
\begin{eqnarray}
\left\langle N_{\text{id.gáz}}\right\rangle & = & -\partial_{\alpha}\ln\mathcal{Z}_{\text{id.gáz}}=\frac{1}{\beta}\partial_{\mu}\ln\mathcal{Z}_{\text{id.gáz}}=-\partial_{\mu}\ln\Phi_{\text{id.gáz}}\\
& = & \frac{1}{\beta}\partial_{\mu}\left(Z_{1}\mathrm{e}^{\beta\mu}\right)=Z_{1}\mathrm{e}^{\beta\mu}\nonumber
\end{eqnarray}
\end_inset
Kapjuk tehát, hogy
\begin_inset Formula
\begin{equation}
\mathrm{e}^{\beta\mu}=\frac{\left\langle N_{\text{id.gáz}}\right\rangle }{Z_{1}}=\frac{\left\langle N_{\text{id.gáz}}\right\rangle }{V}\left(\frac{2\pi m}{\beta h^{2}}\right)^{-3/2}.\label{eq:nagykan-expbetamu-vs-NZ1}
\end{equation}
\end_inset
kihasználva az ideális gáz állapotegyenletét
\begin_inset Formula
\begin{equation}
pV=\frac{\left\langle N_{\text{id.gáz}}\right\rangle }{\beta},
\end{equation}
\end_inset
kapjuk, hogy
\begin_inset Formula
\begin{equation}
\mathrm{e}^{\beta\mu}=p\beta\left(\frac{2\pi m}{\beta h^{2}}\right)^{-3/2}.
\end{equation}
\end_inset
Ezt a kifejezést visszahelyettesítve
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:orias-molekula-absz-atom-szam"
\end_inset
megkapjuk hogy a környezet nyomásától és hőmérsékletétől függően hány atom
van a molekulához kötve.
Vizsgáljuk most meg nagy és kis nyomás határesetekben hogy alakul ez a
kifejezés!
\end_layout
\begin_layout Standard
Kis nyomáson
\begin_inset Formula $p\rightarrow0$
\end_inset
, azaz
\begin_inset Formula $\mathrm{e}^{\beta\mu}\rightarrow0$
\end_inset
a nevezőben elhanyagolhatjuk az
\begin_inset Formula $1$
\end_inset
-es melletti tagokat a számlálóban pedig az
\series bold
\begin_inset Formula $\mathrm{e}^{2\beta\mu}$
\end_inset
\series default
-s tagokat
\begin_inset Formula
\begin{equation}
\lim_{p\rightarrow0}\left\langle N_{\text{absz}}\right\rangle =\lim_{p\rightarrow0}\frac{2\mathrm{e}^{\beta\left(u+\mu\right)}+2\mathrm{e}^{2\beta\left(v+\mu\right)}}{1+2\mathrm{e}^{\beta\left(u+\mu\right)}+\mathrm{e}^{2\beta\left(v+\mu\right)}}\approx2\mathrm{e}^{\frac{u}{k_{\mathrm{B}}T}}\frac{p}{k_{\mathrm{B}}T}\left(\frac{2\pi mk_{\mathrm{B}}T}{h}\right)^{-3/2}.
\end{equation}
\end_inset
Nagy nyomáson
\begin_inset Formula $p\rightarrow\infty$
\end_inset
, azaz
\begin_inset Formula $\mathrm{e}^{\beta\mu}\rightarrow\infty$
\end_inset
\begin_inset Formula
\begin{equation}
\lim_{p\rightarrow\infty}\left\langle N_{\text{absz}}\right\rangle =\lim_{x\rightarrow\infty}\frac{2x+2x^{2}}{1+2x+x^{2}}=2,
\end{equation}
\end_inset
tehát mindenki be van töltve.
\end_layout
\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "90col%"
special "none"
height "1in"
height_special "totalheight"
status open
\begin_layout Exercise
Vezessük le
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:nagykan-expbetamu-vs-NZ1"
\end_inset
-t kanonikus formalizmusban.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section
Tapadós falú bögre
\end_layout
\begin_layout Standard
Vizsgáljuk meg kanonikus és nagykanonikus formalizmusban egy tapadós falú
edénybe helyezett ideális gáz az edény falához kötött atomjainak számát!
Az edény falának
\begin_inset Formula $B$
\end_inset
számú kötési helye van melyekre tapadva a gáz egy részecskéje
\begin_inset Formula $-\varepsilon$
\end_inset
kötési energiával bír.
Tegyük fel hogy a gáz részecskéinek száma
\begin_inset Formula $N$
\end_inset
sokkal nagyobb mint a kötési helyek száma, azaz ahol szükséges, élhetünk
a
\begin_inset Formula $B\ll N$
\end_inset
feltevéssel.
\end_layout
\begin_layout Standard
\bar under
Kanonikus
\end_layout
\begin_layout Standard
A teljes rendszer (kötött és kötetlen atomok) állapotösszege
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
Z=\sum_{n=0}^{B}\overbrace{\left(\begin{array}{c}
B\\
n
\end{array}\right)\mathrm{e}^{\beta\varepsilon n}}^{\mbox{kötött}}\underbrace{\frac{Z_{1}^{N-n}}{\left(N-n\right)!}}_{\mbox{nem kötött}}.
\end{equation}
\end_inset
\emph on
Megjegyzés:
\emph default
A kombinatorikai faktor átírása
\begin_inset Formula
\begin{eqnarray}
\left(\begin{array}{c}
B\\
n
\end{array}\right)\frac{1}{\left(N-n\right)!} & = & \left(\begin{array}{c}
B\\
n
\end{array}\right)\frac{1}{\left(N-n\right)!}\frac{n!}{n!}\frac{N!}{N!}\\
& = & \underbrace{\frac{1}{N!}}_{\mbox{Gibbs}}\times\underbrace{\left(\begin{array}{c}
N\\
n
\end{array}\right)}_{\mbox{atomok kiválasztás}}\times\underbrace{n!}_{\mbox{kötési konfigurációk száma}}\times\underbrace{\left(\begin{array}{c}
B\\
n
\end{array}\right)}_{\mbox{kötési hely kiválasztása}}
\end{eqnarray}
\end_inset
egy másik megközelítésből világít rá az állapot összeg struktúrájára.
\end_layout
\begin_layout Standard
A kötött részecskék számának direkt meghatározása a kanonikus átlagok
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:klasszik-varhato-ertek"
\end_inset
definíciója alapján
\begin_inset Formula
\begin{equation}
\left\langle n\right\rangle =\frac{\sum_{n=0}^{B}n\left(\begin{array}{c}
B\\
n
\end{array}\right)\mathrm{e}^{\beta\varepsilon n}\frac{Z_{1}^{N-n}}{\left(N-n\right)!}}{\sum_{n=0}^{B}\left(\begin{array}{c}
B\\
n
\end{array}\right)\mathrm{e}^{\beta\varepsilon n}\frac{Z_{1}^{N-n}}{\left(N-n\right)!}}=\frac{\sum_{n=0}^{B}n\left(\begin{array}{c}
B\\
n
\end{array}\right)\mathrm{e}^{\beta\varepsilon n}\frac{Z_{1}^{N-n}}{\left(N-n\right)!}{\color{red}N!}}{\sum_{n=0}^{B}\left(\begin{array}{c}
B\\
n
\end{array}\right)\mathrm{e}^{\beta\varepsilon n}\frac{Z_{1}^{N-n}}{\left(N-n\right)!}{\color{red}N!}}.
\end{equation}
\end_inset
Kihasználva hogy
\begin_inset Formula $N\gg B$
\end_inset
azaz
\begin_inset Formula $N\gg n$
\end_inset
:
\begin_inset Formula
\begin{equation}
\frac{N!}{(N-n)!}=N(N-1)\dots(N-n+1)\underset{n\ll N}{\approx}N^{n},
\end{equation}
\end_inset
A kötött részecskék száma
\begin_inset Formula
\begin{eqnarray}
\left\langle n\right\rangle & = & \frac{\sum_{n=0}^{B}n\left(\begin{array}{c}
B\\
n
\end{array}\right)\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)^{n}}{\sum_{n=0}^{B}\left(\begin{array}{c}
B\\
n
\end{array}\right)\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)^{n}}=\frac{\sum_{n=0}^{B}n\left(\begin{array}{c}
B\\
n
\end{array}\right)\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)^{n}}{\left[1+\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)\right]^{B}}\\
& = & \frac{{\color{red}\sum_{n=1}^{B}}\frac{B!}{{\color{red}\left(n-1\right)!}(B-n)!}\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)^{n}}{\left[1+\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)\right]^{B}}=\frac{\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}B\sum_{n=1}^{B}\frac{{\color{red}\left(B-1\right)!}}{(n-1)!(B-n)!}\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)^{{\color{red}n-1}}}{\left[1+\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)\right]^{B}}\\
& = & \frac{\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}B\left[1+\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)\right]^{B-1}}{\left[1+\left(\frac{N\mathrm{e}^{\beta\varepsilon}}{Z_{1}}\right)\right]^{B}}=\frac{\frac{N}{Z_{1}}\mathrm{e}^{\beta\varepsilon}B}{1+\frac{N}{Z_{1}}\mathrm{e}^{\beta\varepsilon}}.\label{eq:bogre-kan-reszecskeszam}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\bar under
Nagykanonikus
\end_layout
\begin_layout Standard
A kötött atomok nagykanonikus állapotösszege
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:nagykan-Z"
\end_inset
szerint
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\mathcal{Z}_{\text{kötött}}=\sum_{n=0}^{B}\left(\begin{array}{c}
B\\
n
\end{array}\right)\mathrm{e}^{-\beta\left(-\varepsilon-\mu\right)n}=\left[1+\mathrm{e}^{\beta\left(\varepsilon+\mu\right)}\right]^{B}.
\end{equation}
\end_inset
A nagykanonikus termodinamikai potenciál
\begin_inset Formula
\begin{equation}
\Phi=-\frac{\ln\mathcal{Z}_{\text{kötött}}}{\beta}
\end{equation}
\end_inset
kémiai potenciál szerinti deriváltja
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:nagykan-reszecskeszam"
\end_inset
adja meg a kötött részecskék várható értékét:
\begin_inset Formula
\begin{eqnarray}
\left\langle n\right\rangle & = & -\partial\mu\Phi,\\
& = & \frac{1}{\beta}\partial_{\mu}B\ln\left[1+\mathrm{e}^{\beta\left(\varepsilon+\mu\right)}\right],\nonumber \\
& = & B\frac{\mathrm{e}^{\beta\left(\varepsilon+\mu\right)}}{1+\mathrm{e}^{\beta\left(\varepsilon+\mu\right)}}.\label{eq:bogre-nagykan-reszecskeszam}
\end{eqnarray}
\end_inset
Az előző feladatban láttuk hogy a
\begin_inset Formula $\mu$
\end_inset
kémiai potenciál kifejezhető a gáz fázisban levő részecskék számával és
a egy gázrészecske kanonikus állapotösszegével
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:nagykan-expbetamu-vs-NZ1"
\end_inset
, azaz:
\begin_inset Formula
\begin{equation}
\mathrm{e}^{\beta\mu}=\frac{N}{Z_{1}}=p\beta\left(\frac{2\pi m}{\beta h}\right)^{-3/2}.
\end{equation}
\end_inset
\emph on
Megjegyzés:
\emph default
Itt is támaszkodunk a termodinamikai határeseteben érvényes
\begin_inset Formula $N\gg n$
\end_inset
közelítésre!
\end_layout
\begin_layout Standard
Kapjuk tehát, a várakozásainknak megfelelően, hogy
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:bogre-nagykan-reszecskeszam"
\end_inset
és
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:bogre-kan-reszecskeszam"
\end_inset
megegyeznek!
\end_layout
\begin_layout Section
Féligáteresztő tartály
\end_layout
\begin_layout Standard
Vizsgáljunk egy
\begin_inset Formula $V$
\end_inset
térfogatú vegyes gázt félig áteresztő tartályban,
\begin_inset Formula $A$
\end_inset
típusú atomok átmennek
\begin_inset Formula $B$
\end_inset
típusúak nem.
A környezetben
\begin_inset Formula $A$
\end_inset
atomok vannak
\begin_inset Formula $T$
\end_inset
hőmérsékleten és
\begin_inset Formula $p_{0}$
\end_inset
nyomáson.
Átlagosan mennyi
\begin_inset Formula $A$
\end_inset
atom van a tartályban és mekkora nyomást képviselnek?
\end_layout
\begin_layout Standard
\bar under
Vegyes sokasággal
\end_layout
\begin_layout Standard
Tekinthetünk a tartályra mint az
\begin_inset Formula $A$
\end_inset
atomok szempontjából nagykanonikus, a
\begin_inset Formula $B$
\end_inset
atomok szempontjából kanonikus eloszlás szerint viselkedő rendszerre.
Ekkor bevezethetjük a
\begin_inset Quotes pld
\end_inset
vegyes
\begin_inset Quotes prd
\end_inset
állapotösszeget:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\mathbb{Z}=\frac{1}{N_{B}!}Z_{1B}^{N_{B}}\mathrm{e}^{\left(Z_{1A}\mathrm{e}^{\beta\mu_{A}}\right)}
\end{equation}
\end_inset
Ahol egy
\begin_inset Formula $A$
\end_inset
illetve
\series bold
\begin_inset Formula $B$
\end_inset
\series default
részecske állapot összege, a szokásos
\begin_inset Formula
\begin{equation}
Z_{1A/B}=V\left(\frac{2\pi m_{A/B}}{\beta h}\right)^{3/2}=Vz_{A/B},
\end{equation}
\end_inset
alakot ölti.
A
\begin_inset Quotes pld
\end_inset
vegyes
\begin_inset Quotes prd
\end_inset
termodinamikai potenciál, a kanonikus és a nagykanonikussal analóg módon:
\begin_inset Formula