-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathipt.py
399 lines (336 loc) · 15.4 KB
/
ipt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
The official jax code is released and available at https://github.com/google-research/vision_transformer
Status/TODO:
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights.
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches.
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code.
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future.
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
from torch.functional import Tensor
import torch.nn as nn
from functools import partial
import math
import warnings
class Ffn(nn.Module):
# feed forward network layer after attention
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer(inplace=True)
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.query = nn.Linear(dim, dim, bias=qkv_bias)
self.key = nn.Linear(dim, dim, bias=qkv_bias)
self.value = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, k, v):
N, L, D = q.shape
q, k, v = self.query(q), self.key(k), self.value(v)
q = q.reshape(N, L, self.num_heads, D // self.num_heads).permute(0, 2, 1, 3)
k = k.reshape(N, L, self.num_heads, D // self.num_heads).permute(0, 2, 1, 3)
v = v.reshape(N, L, self.num_heads, D // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(N, L, D)
x = self.proj(x)
x = self.proj_drop(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.ReLU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, pos):
x = self.norm1(x)
q, k, v = x + pos, x + pos, x
x = x + self.attn(q, k, v)
x = x + self.ffn(self.norm2(x))
return x
class DecoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.ReLU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn1 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.attn2 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm3 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, pos, task_embed):
memory = x
x = self.norm1(x)
q, k, v = x + task_embed, x + task_embed, x
x = x + self.attn1(q, k, v)
x = self.norm2(x)
q, k, v = x + task_embed, memory + pos, memory
x = x + self.attn2(q, k, v)
x = x + self.ffn(self.norm3(x))
return x
class ResBlock(nn.Module):
def __init__(self, channels):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
# self.bn1 = nn.BatchNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
# self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
out = self.conv1(x)
# out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
# out = self.bn2(out)
out += residual
# out = self.relu(out)
return out
class Head(nn.Module):
""" Head consisting of convolution layers
Extract features from corrupted images, mapping N3HW images into NCHW feature map.
"""
def __init__(self, in_channels, out_channels):
super(Head, self).__init__()
self.conv1= nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1,
padding=1, bias=False)
# self.bn1 = nn.BatchNorm2d(out_channels) if task_id in [0, 1, 5] else nn.Identity()
# self.relu = nn.ReLU(inplace=True)
self.resblock1 = ResBlock(out_channels)
self.resblock2 = ResBlock(out_channels)
def forward(self, x):
out = self.conv1(x)
# out = self.bn1(out)
# out = self.relu(out)
out = self.resblock1(out)
out = self.resblock2(out)
return out
class PatchEmbed(nn.Module):
""" Feature to Patch Embedding
input : N C H W
output: N num_patch P^2*C
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x):
N, C, H, W = ori_shape = x.shape
p = self.patch_size
num_patches = (H // p) * (W // p)
out = torch.zeros((N, num_patches, self.dim)).to(x.device)
#print(f"feature map size: {ori_shape}, embedding size: {out.shape}")
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, k, :] = x[:, :, i:i+p, j:j+p].flatten(1)
i += p
return out, ori_shape
class DePatchEmbed(nn.Module):
""" Patch Embedding to Feature
input : N num_patch P^2*C
output: N C H W
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.num_patches = None
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x, ori_shape):
N, num_patches, dim = x.shape
_, C, H, W = ori_shape
p = self.patch_size
out = torch.zeros(ori_shape).to(x.device)
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, :, i:i+p, j:j+p] = x[:, k, :].reshape(N, C, p, p)
#out[:, k, :] = x[:, :, i:i+p, j:j+p].flatten(1)
i += p
return out
class Tail(nn.Module):
""" Tail consisting of convolution layers and pixel shuffle layers
NCHW -> N3HW.
"""
def __init__(self, task_id, in_channels, out_channels):
super(Tail, self).__init__()
assert 0 <= task_id <= 5
# 0, 1 for noise 30, 50; 2, 3, 4 for sr x2, x3, x4, 5 for defog
upscale_map = [1, 1, 2, 3, 4, 1]
scale = upscale_map[task_id]
m = []
# for SR task
if scale > 1:
m.append(nn.Conv2d(in_channels, in_channels * scale * scale, kernel_size=3, stride=1,
padding=1, bias=False))
if (scale & (scale - 1)) == 0:
for _ in range(int(math.log(scale, 2))):
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.PixelShuffle(3))
else:
raise NameError("Only support x3 and x2^n SR")
m.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1,
padding=1, bias=False))
self.m = nn.Sequential(*m)
def forward(self, x):
out = self.m(x)
#print("task_id:", self.task_id)
#print("shape of tail's output:", x.shape)
# out = self.bn1(out)
return out
class ImageProcessingTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, patch_size=1, in_channels=3, mid_channels=64, num_classes=1000, depth=12,
num_heads=8, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
norm_layer=nn.LayerNorm):
super(ImageProcessingTransformer, self).__init__()
self.task_id = None
self.num_classes = num_classes
self.embed_dim = patch_size * patch_size * mid_channels
self.headsets = nn.ModuleList([Head(in_channels, mid_channels) for _ in range(6)])
self.patch_embedding = PatchEmbed(patch_size=patch_size, in_channels=mid_channels)
self.embed_dim = self.patch_embedding.dim
if self.embed_dim % num_heads != 0:
raise RuntimeError("Embedding dim must be devided by numbers of heads")
self.pos_embed = nn.Parameter(torch.zeros(1, (48 // patch_size) ** 2, self.embed_dim))
self.task_embed = nn.Parameter(torch.zeros(6, 1, (48 // patch_size) ** 2, self.embed_dim))
self.encoder = nn.ModuleList([
EncoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
self.decoder = nn.ModuleList([
DecoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
#self.norm = norm_layer(self.embed_dim)
self.de_patch_embedding = DePatchEmbed(patch_size=patch_size, in_channels=mid_channels)
# tail
self.tailsets = nn.ModuleList([Tail(id, mid_channels, in_channels) for id in range(6)])
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def set_task(self, task_id):
self.task_id = task_id
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
assert 0 <= self.task_id <= 5
# print("input shape:", x.shape, x.device)
x = self.headsets[self.task_id](x)
x, ori_shape = self.patch_embedding(x)
# print("embedding shape:", x.shape)
# print(x.device, self.pos_embed.device)
for blk in self.encoder:
x = blk(x, self.pos_embed[:, :x.shape[1]])
for blk in self.decoder:
x = blk(x, self.pos_embed[:, :x.shape[1]], self.task_embed[self.task_id, :, :x.shape[1]])
x = self.de_patch_embedding(x, ori_shape)
x = self.tailsets[self.task_id](x)
#x = self.norm(x)
return x
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def ipt_base(**kwargs):
model = ImageProcessingTransformer(
patch_size=4, depth=12, num_heads=8, ffn_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model