-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loading.py
361 lines (301 loc) · 11 KB
/
data_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import pandas as pd
from decimal import Decimal
from typing import Optional
import glob
from dataclasses import dataclass
def get_price_range_for_level(
book: pd.DataFrame,
lvl: int
) -> pd.DataFrame:
assert lvl > 0
assert lvl <= (book.shape[1] // 4)
p_range = book[[(lvl-1) * 4, (lvl-1) * 4 + 2]].copy()
p_range.columns = ['p_max', 'p_min']
# replace -1 nan value with same nan values used in lobster data
p_range.p_max = p_range.p_max.replace(-1, 9999999999)
p_range.p_min = p_range.p_min.replace(-1, -9999999999)
return p_range
def filter_by_lvl(
messages: pd.DataFrame,
book: pd.DataFrame,
lvl: int
) -> tuple[pd.DataFrame, pd.DataFrame]:
assert messages.shape[0] == book.shape[0]
book = book.iloc[:, :lvl * 4]
p_range = get_price_range_for_level(book, lvl)
messages = messages[(messages.price <= p_range.p_max) & (messages.price >= p_range.p_min)]
book = book.loc[messages.index]
return messages, book
def cut_data_to_lvl(in_path, out_path, lvl, overwrite=False):
if not overwrite and (in_path == out_path):
raise ValueError('in_path and out_path are the same, set overwrite=True to overwrite files')
book_paths = sorted(glob.glob(in_path + '*orderbook*.csv'))
message_paths = sorted(glob.glob(in_path + '*message*.csv'))
assert len(book_paths) == len(message_paths)
for m_f, b_f in zip(message_paths, book_paths):
b = load_book_df(b_f)
m = load_message_df(m_f, parse_time=False)
# print('before', m.shape, b.shape)
m, b = filter_by_lvl(m, b, lvl)
# print('after', m.shape, b.shape)
# print('save to', out_path + m_f.rsplit('/', 1)[1])
# print()
m.to_csv(out_path + m_f.rsplit('/', 1)[1], header=None, index=None)
b.to_csv(out_path + b_f.rsplit('/', 1)[1], header=None, index=None)
def load_message_df(m_f: str, parse_time: bool = True) -> pd.DataFrame:
cols = ['time', 'event_type', 'order_id', 'size', 'price', 'direction']
messages = pd.read_csv(
m_f,
names=cols,
usecols=cols,
index_col=False,
dtype={
'time': str,
'event_type': 'int32',
'order_id': 'int32',
'size': 'int32',
'price': 'int32',
'direction': 'int32'
}
)
if parse_time:
messages.time = messages.time.apply(lambda x: Decimal(x))
return messages
def load_book_df(b_f: str) -> pd.DataFrame:
book = pd.read_csv(
b_f,
index_col=False,
header=None
)
return book
def add_date_to_time(df: pd.DataFrame, date: str) -> pd.Series:
# df.time = pd.to_datetime(date) + pd.to_datetime(df.time, unit='s')
sec_nanosec = df.time.astype(str).str.split('.', expand=True)
sec_nanosec[1] = sec_nanosec[1].str.pad(9, side='right', fillchar='0')
df.time = pd.to_datetime(date) + pd.to_timedelta(sec_nanosec[0] + 's') + pd.to_timedelta(sec_nanosec[1] + 'ns')
return df
class Lazy_Tuple():
""" Takes callables as args, returning their results when indexed. """
def __init__(self, *args) -> None:
self.args = args
def __getitem__(self, i):
return self.args[i]()
def __len__(self):
return len(self.args)
class Lobster_Sequence():
def __init__(
self,
date: str,
m_real: callable,
b_real: callable,
num_gen_series: tuple[int],
m_gen: Optional[tuple[callable]] = None,
b_gen: Optional[tuple[callable]] = None,
m_cond: Optional[tuple[callable]] = None,
b_cond: Optional[tuple[callable]] = None,
# num_gen_series,
# m_gen = None,
# b_gen = None,
# m_cond = None,
# b_cond = None,
# NOTE uncomment this return back when publish,
# tuple[int] cannot be recognized on my env
# it was commented for easy tesging.
) -> None:
self.date = date
if callable(m_real):
self._m_real = m_real
else:
self.m_real = m_real
if callable(b_real):
self._b_real = b_real
else:
self.b_real = b_real
if m_gen is not None:
if callable(m_gen[0]):
self._m_gen = m_gen
else:
self.m_gen = m_gen
else:
self.m_gen = None
if b_gen is not None:
if callable(b_gen[0]):
self._b_gen = b_gen
else:
assert len(b_gen) == num_gen_series[0], f"Expected {num_gen_series[0]} generated book files. Got {len(b_gen)}."
self.b_gen = b_gen
else:
self.b_gen = None
if callable(m_cond):
self._m_cond = m_cond
else:
self.m_cond = m_cond
if callable(b_cond):
self._b_cond = b_cond
else:
self.b_cond = b_cond
self.num_gen_series = num_gen_series
def materialize(self):
""" Replace callables with their results. Can be useful if data loading functions take a long time. """
self.m_real = self.m_real
self.b_real = self.b_real
self.m_cond = self.m_cond
self.b_cond = self.b_cond
if self._m_gen is not None:
self.m_gen = tuple(m for m in self.m_gen)
if self._b_gen is not None:
self.b_gen = tuple(b for b in self.b_gen)
@property
def m_real(self):
x = self._m_real()
# if not isinstance(x, tuple):
# x = (x,)
return x
@m_real.setter
def m_real(self, value):
if value is None:
self._m_real = None
if callable(value):
self._m_real = value
else:
self._m_real = lambda: value
@property
def b_real(self):
x = self._b_real()
# if not isinstance(x, tuple):
# x = (x,)
return x
@b_real.setter
def b_real(self, value):
if value is None:
self._b_real = None
elif callable(value):
self._b_real = value
else:
self._b_real = lambda: value
@property
def m_gen(self):
if self._m_gen is None:
return None
return Lazy_Tuple(*self._m_gen)
@m_gen.setter
def m_gen(self, value):
if value is None:
self._m_gen = None
elif callable(value):
self._m_gen = value
else:
self._m_gen = tuple(lambda: x for x in value)
@property
def b_gen(self):
if self._b_gen is None:
return None
return Lazy_Tuple(*self._b_gen)
@b_gen.setter
def b_gen(self, value):
if value is None:
self._b_gen = None
elif callable(value):
self._b_gen = value
else:
self._b_gen = tuple(lambda: x for x in value)
@property
def m_cond(self):
return self._m_cond()
@m_cond.setter
def m_cond(self, value):
if value is None:
self._m_cond = None
elif callable(value):
self._m_cond = value
else:
self._m_cond = lambda: value
@property
def b_cond(self):
return self._b_cond()
@b_cond.setter
def b_cond(self, value):
if value is None:
self._b_cond = None
elif callable(value):
self._b_cond = value
else:
self._b_cond = lambda: value
class Simple_Loader():
def __init__(
self,
real_data_path: str,
gen_data_path: str,
cond_data_path: str
) -> None:
# load sample lobster data
real_message_paths = sorted(glob.glob(real_data_path + '/*message*.csv'))
real_book_paths = sorted(glob.glob(real_data_path + '/*orderbook*.csv'))
if len(real_book_paths) == 0:
real_book_paths = [None] * len(real_message_paths)
self.paths = []
for rmp, rbp, in zip(real_message_paths, real_book_paths):
_, _, after = rmp.partition('real_id_')
real_id = after.split('_')[0].split('.')[0]
gen_messsage_paths = sorted(glob.glob(gen_data_path + f'/*message*real_id_{real_id}_gen_id_*.csv'))
gen_book_paths = sorted(glob.glob(gen_data_path + f'/*orderbook*real_id_{real_id}_gen_id_*.csv'))
cond_message_path = sorted(glob.glob(cond_data_path + f'/*message*real_id_{real_id}.csv'))
cond_book_path = sorted(glob.glob(cond_data_path + f'/*orderbook*real_id_{real_id}.csv'))
if len(cond_message_path) == 0:
cond_message_path = None
elif len(cond_message_path) == 1:
cond_message_path = cond_message_path[0]
else:
raise ValueError(f"Multiple conditional message files found. (real_id={real_id})")
if len(cond_book_path) == 0:
cond_book_path = None
elif len(cond_book_path) == 1:
cond_book_path = cond_book_path[0]
else:
raise ValueError(f"Multiple conditional book files found. (real_id={real_id})")
date_str = rmp.split('/')[-1].split('_')[1]
self.paths.append((date_str, rmp, rbp, gen_messsage_paths, gen_book_paths, cond_message_path, cond_book_path))
def __len__(self) -> int:
return len(self.paths)
# def __getitem__(self, i: int):
def __getitem__(self, i: int) -> tuple[pd.DataFrame, pd.DataFrame, tuple[pd.DataFrame], Optional[tuple[pd.DataFrame]]]:
""" Get 1 real and N generated dataframes for a given period
Returns: real_messages, real_book, tuple(gen_messages), [tuple(gen_books)]
The generated book files are optional and will be calculated from messages using JaxLob simulator if not provided.
"""
date, rmp, rbp, gmp, gbp, cmp, cbp = self.paths[i]
def m_real():
m = load_message_df(rmp)
m = add_date_to_time(m, date)
return m
def b_real():
return load_book_df(rbp)
m_gen = tuple(
lambda: add_date_to_time(
load_message_df(m),
date
) for m in gmp
)
b_gen = tuple(lambda: load_book_df(b) for b in gbp)
def m_cond():
m = load_message_df(cmp)
m = add_date_to_time(m, date)
return m
def b_cond():
return load_book_df(cbp)
s = Lobster_Sequence(
date,
m_real,
b_real,
num_gen_series=(len(gmp),),
m_gen=m_gen,
b_gen=b_gen,
m_cond=m_cond,
b_cond=b_cond,
)
return s
if __name__=='__main__':
d = '/homes/80/kang/lob_bench/data_lob_bench/'
loader = Simple_Loader(d+'data_test_real', d+'data_test_gen', d+'data_test_cond')
loader[0]
print()