forked from KaroDievas/car-sound-classification-with-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor.py
69 lines (54 loc) · 1.88 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.preprocessing import image
import numpy as np
import sys
# dimensions of our images.
img_width, img_height = 256, 256
train_data_dir = 'data/small_pictures/train'
validation_data_dir = 'data/small_pictures/validation'
nb_train_samples = 50
nb_validation_samples = 50
nb_epoch = 100
model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(3, img_width, img_height)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(128, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(256, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(512, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(4))
model.add(Activation('sigmoid'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# loading precompiled model
model.load_weights('models/smaller_scale_256x256.h5')
print 'arguments: ',
# path to file which need to predict
img_path = sys.argv[1]
# target_size must be same as model input size
img = image.load_img(img_path, target_size=(img_width, img_height))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
preds = model.predict_classes(x)
# prints predics array of four classes
print('Predicted:', preds)