-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_context.py
223 lines (175 loc) · 8.66 KB
/
main_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from transformers import BertForMaskedLM, AutoTokenizer, T5ForConditionalGeneration, T5Tokenizer, RobertaForMaskedLM, BertTokenizer
import torch
import torch.nn as nn
import pandas as pd
import ast
import tqdm as notebook_tqdm
import os
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
import sys
import argparse
sys.path.append('./utils/')
from newutils import get_exclude_dicts, get_to_exclude, predict_t5, predict_bert, clean_preds_t5, clean_preds_ssm, get_template, load_jsonl, flatten, partial_match
def run(model_name, relation_name, batch_size):
os.environ['CUDA_VISIBLE_DEVICES']='0'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
MODEL_NAME = model_name
RELATION = relation_name
BS = batch_size
if 'bert-base' in MODEL_NAME.lower() or 'bert-large' in MODEL_NAME.lower():
model = BertForMaskedLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, model_max_length=512)
MASK_TOKEN = tokenizer.mask_token
elif 'informbert' in MODEL_NAME.lower():
# This model uses the roberta class, and bert tokenizer
model = RobertaForMaskedLM.from_pretrained(MODEL_NAME)
tokenizer = BertTokenizer.from_pretrained(MODEL_NAME, model_max_length=512)
MASK_TOKEN = tokenizer.mask_token
elif 't5' in MODEL_NAME.lower():
model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, add_prefix_space=True, legacy = False, model_max_length=512)
MASK_TOKEN = tokenizer.additional_special_tokens[0] # '<extra_id_0>'
else:
raise ValueError
model.to(device)
#RELATION = 'P36'
subject = 'sub'
object = 'obj'
evidence = 'evds'
relation = load_jsonl('./data/lama/{}.jsonl'.format(RELATION))
template, relation_type = get_template(RELATION, filename='./data/lama/relations.jsonl')
input_text = template.replace('[X]', '{}').replace('[Y]', '{}')
subs = []
objs = []
ctxs = []
for i in relation:
if i['sub_label'] != i['obj_label']:
subs.append(i['sub_label'])
objs.append(i['obj_label'])
ctxs.append(i['evidences'][0]['masked_sentence'].replace('[MASK]', i['obj_label']))
df = pd.DataFrame(
{
subject : subs,
object : objs,
evidence: ctxs,
}
)
# filter out multi-token entities for BERT
if 'bert' in MODEL_NAME.lower():
df = df[df.apply(lambda x: (len(tokenizer.tokenize(x[subject])) == 1) and (len(tokenizer.tokenize(x[object])) == 1), axis=1)]
# convert to lower case if uncased
if 'uncased' in MODEL_NAME.lower():
df[subject] = df[subject].apply(lambda x: x.lower())
df[object] = df[object].apply(lambda x: x.lower())
# to fiterout easy examples
df = df[df.apply(lambda x: (x[subject] not in x[object]) and (x[object] not in x[subject]), axis=1)]
if len(df) == 0:
print('No data for this relation!')
with open('results_context.csv', 'a') as f:
f.write('{}, {}, {}, {}, {}\n'.format(MODEL_NAME, RELATION, len(df), 'NA', 'NA'))
return
print(df)
inputs11 = df[subject].apply(lambda x: input_text.format(x, MASK_TOKEN)).tolist()
inputs11 = [x + ' ' + y for x, y in zip(inputs11, df[evidence].values)]
print('Sample from inputs11:')
print(inputs11[:5])
inputs21 = df[object].apply(lambda x: input_text.format(MASK_TOKEN, x)).tolist()
inputs21 = [x + ' ' + y for x, y in zip(inputs21, df[evidence].values)]
print('Sample from inputs21:')
print(inputs21[:5])
# Round 1
if 'bert' in MODEL_NAME.lower():
preds11 = predict_bert(model, tokenizer, device, inputs11, excluded_ids = None)
preds21 = predict_bert(model, tokenizer, device, inputs21, excluded_ids = None)
if 'informbert' in MODEL_NAME.lower():
preds11 = [x.replace(' ', '') for x in preds11 ]
preds21 = [x.replace(' ', '') for x in preds21 ]
elif 't5' in MODEL_NAME.lower():
preds11_raw = predict_t5(model, tokenizer, device, inputs11, batch_size = BS, excluded_ids = None)
preds21_raw = predict_t5(model, tokenizer, device, inputs21, batch_size = BS, excluded_ids = None)
if 'ssm' in MODEL_NAME.lower():
preds11 = clean_preds_ssm(flatten(preds11_raw))
preds21 = clean_preds_ssm(flatten(preds21_raw))
else:
preds11 = clean_preds_t5(preds11_raw)
preds21 = clean_preds_t5(preds21_raw)
else:
raise ValueError
# Round 2
# prepare exclusion dicts
exclude_dict_sub, exclude_dict_obj = get_exclude_dicts(df, subject, object)
inputs12 = pd.Series(preds11).apply(lambda x: input_text.format(MASK_TOKEN, x)).tolist()
inputs12 = [x + ' ' + y for x, y in zip(inputs12, df[evidence].values)]
inputs22 = pd.Series(preds21).apply(lambda x: input_text.format(x, MASK_TOKEN)).tolist()
inputs22 = [x + ' ' + y for x, y in zip(inputs22, df[evidence].values)]
print('Sample from inputs12:')
print(inputs12[:5])
print('Sample from inputs22:')
print(inputs22[:5])
if 'bert' in MODEL_NAME.lower():
excluded_ids12, excluded_words12 = get_to_exclude(tokenizer, exclude_dict_obj, preds11, df[subject], relation_type)
excluded_ids22, excluded_words22 = get_to_exclude(tokenizer, exclude_dict_sub, preds21, df[object], relation_type)
preds12 = predict_bert(model, tokenizer, device, inputs12, excluded_ids = excluded_ids12)
preds22 = predict_bert(model, tokenizer, device, inputs22, excluded_ids = excluded_ids22)
if 'informbert' in MODEL_NAME.lower():
preds12 = [x.replace(' ', '') for x in preds12 ]
preds22 = [x.replace(' ', '') for x in preds22 ]
elif 't5' in MODEL_NAME.lower():
excluded_ids12, excluded_words12 = get_to_exclude(tokenizer, exclude_dict_obj, preds11, df[subject], relation_type)
excluded_ids22, excluded_words22 = get_to_exclude(tokenizer, exclude_dict_sub, preds21, df[object], relation_type)
preds12_raw = [predict_t5(model, tokenizer, device, i, batch_size = 1, excluded_ids = e) for i, e in zip(inputs12, excluded_ids12)]
preds22_raw = [predict_t5(model, tokenizer, device, i, batch_size = 1, excluded_ids = e) for i, e in zip(inputs22, excluded_ids22)]
if 'ssm' in MODEL_NAME.lower():
preds12 = clean_preds_ssm(flatten(preds12_raw))
preds22 = clean_preds_ssm(flatten(preds22_raw))
else:
preds12 = clean_preds_t5(flatten(preds12_raw))
preds22 = clean_preds_t5(flatten(preds22_raw))
results = pd.DataFrame(
{
subject : df[subject],
object : df[object],
'input11': inputs11,
'pred11': preds11,
'input12': inputs12,
'excluded12': excluded_words12,
'pred12': preds12,
'input21': inputs21,
'pred21': preds21,
'input22': inputs22,
'excluded22': excluded_words22,
'pred22': preds22,
}
)
scores1 = []
scores2 = []
for i, row in results.iterrows():
if partial_match(row['pred12'], row[subject]) and row['pred12'].strip().lower() != row['pred11'].strip().lower():
scores1.append(1)
else:
scores1.append(0)
if partial_match(row['pred22'], row[object]) and row['pred22'].strip().lower() != row['pred21'].strip().lower():
scores2.append(1)
else:
scores2.append(0)
results['score1'] = scores1
results['score2'] = scores2
if 't5' in MODEL_NAME.lower():
results['preds11_raw'] = preds11_raw
results['preds21_raw'] = preds21_raw
results['preds12_raw'] = preds12_raw
results['preds22_raw'] = preds22_raw
results.to_csv('./results_context/results_{}_{}.csv'.format(MODEL_NAME.replace('/', '_'), RELATION), index=False)
with open('results_context.csv', 'a') as f:
f.write('{}, {}, {}, {}, {}\n'.format(MODEL_NAME, RELATION, len(df), np.mean(scores1+scores2), np.mean(np.bitwise_and(scores1, scores2))))
def main():
parser = argparse.ArgumentParser(description="Example script to capture arguments and pass to a method")
parser.add_argument("--model", required=True, type = str, help="e.g., 'bert-base-uncased'")
parser.add_argument("--relation", required=True, type=str, help="relation")
parser.add_argument("--bs", required=True, type=int, help="batch size")
args = parser.parse_args()
run(args.model, args.relation, args.bs)
if __name__ == '__main__':
main()