-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_autoregressive.py
198 lines (146 loc) · 6.77 KB
/
main_autoregressive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from transformers import BertForMaskedLM, AutoTokenizer, T5ForConditionalGeneration, T5Tokenizer, RobertaForMaskedLM, BertTokenizer, GPT2LMHeadModel, GPT2Tokenizer, GPTNeoForCausalLM
import torch
import torch.nn as nn
import pandas as pd
import ast
import tqdm as notebook_tqdm
import os
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
import sys
import argparse
sys.path.append('./utils/')
from newutils import get_exclude_dicts, get_to_exclude, predict_t5, predict_bert, clean_preds_t5, clean_preds_ssm, get_ar_templates, load_jsonl, flatten, partial_match, predict_typed_preds_optimized
def prepare_inputs_obj(tokenizer, template, sub, objects):
assert (template.endswith('[Y]'))
model_temp = '{}'
res = []
for o in objects:
res.append((template.replace('[X]', sub).replace('[Y]', ''), model_temp.format(o)))
return res
def prepare_inputs_sub(tokenizer, template, obj, subjects):
assert (template.endswith('[X]'))
model_temp = '{}'
res = []
for s in subjects:
res.append((template.replace('[Y]', obj).replace('[X]', ''), model_temp.format(s)))
return res
def prepare_inputs_sub2(tokenizer, template, obj, subjects, to_exclude, gt_sub):
assert (template.endswith('[X]'))
# subjects that need to be excluded
subjects_local = subjects.copy()
for x in to_exclude:
if x != gt_sub:
subjects_local.remove(x)
model_temp = '{}'
res = []
assert (gt_sub in subjects_local)
for s in subjects_local:
res.append((template.replace('[Y]', obj).replace('[X]', ''), model_temp.format(s)))
return res
def prepare_inputs_obj2(tokenizer, template, sub, objects, to_exclude, gt_obj):
assert (template.endswith('[Y]'))
# subjects that need to be excluded
objects_local = objects.copy()
for x in to_exclude:
if x != gt_obj:
objects_local.remove(x)
model_temp = '{}'
res = []
assert (gt_obj in objects_local)
for s in objects_local:
res.append((template.replace('[X]', sub).replace('[Y]', ''), model_temp.format(s)))
return res
def run(model_name, relation_name, batch_size):
os.environ['CUDA_VISIBLE_DEVICES']='0'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
MODEL_NAME = model_name
RELATION = relation_name
BS = batch_size
if 'gpt2' in MODEL_NAME.lower():
model = GPT2LMHeadModel.from_pretrained("gpt2").to(device)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
elif 'gpt-neo' in MODEL_NAME.lower():
model = GPTNeoForCausalLM.from_pretrained(MODEL_NAME).to(device)
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME)
else:
raise ValueError
model.to(device)
#RELATION = 'P36'
subject = 'sub'
object = 'obj'
relation = load_jsonl('./data/lama/{}.jsonl'.format(RELATION))
temp_obj, temp_sub = get_ar_templates(RELATION, filename='./data/lama/relations_autregressive.jsonl')
subs = []
objs = []
for i in relation:
if i['sub_label'] != i['obj_label']:
subs.append(i['sub_label'])
objs.append(i['obj_label'])
df = pd.DataFrame(
{
subject : subs,
object : objs
}
)
# to fiterout easy examples
df = df[df.apply(lambda x: (x[subject] not in x[object]) and (x[object] not in x[subject]), axis=1)]
if len(df) == 0:
print('No data for this relation!')
with open('results_ar_lms.csv', 'a') as f:
f.write('{}, {}, {}, {}, {}\n'.format(MODEL_NAME, RELATION, len(df), 'NA', 'NA'))
return
print(df)
# TODO: augment objects to avoid to easy instances
# would predict objects
df['inputs11'] = df.apply(lambda x: prepare_inputs_obj(tokenizer, temp_obj, x[subject], list(set(objs))), axis=1)
# would predict subjects
df['inputs21'] = df.apply(lambda x: prepare_inputs_sub(tokenizer, temp_sub, x[object], list(set(subs))), axis=1)
# predicting objects
# [X] some template [MASK] --> [Y] == pred11 / predicting objects
predict_typed_preds_optimized(df, model, tokenizer, device, 'inputs11', batch_size=batch_size)
# predicting subjects
predict_typed_preds_optimized(df, model, tokenizer, device, 'inputs21', batch_size=batch_size)
# exclude_dict_obj mapping from [Y] to all [X]'s
# exclude_dict_sub mapping from [X] to all [Y]'s
exclude_dict_sub, exclude_dict_obj = get_exclude_dicts(df, subject, object)
# Round 2
# need mapping from objects to subjects (exclude_dict_obj)
df['excluded12'] = df.apply(lambda x: exclude_dict_obj.get(x['pred11'], []), axis=1)
df['excluded22'] = df.apply(lambda x: exclude_dict_sub.get(x['pred21'], []), axis=1)
df['inputs12'] = df.apply(lambda x: prepare_inputs_sub2(tokenizer, temp_sub, x['pred11'], list(set(subs)), x['excluded12'], x[subject]), axis=1)
df['inputs22'] = df.apply(lambda x: prepare_inputs_obj2(tokenizer, temp_obj, x['pred21'], list(set(objs)), x['excluded22'], x[object]), axis=1)
# predicting subjects
predict_typed_preds_optimized(df, model, tokenizer, device, 'inputs12', batch_size=batch_size)
# predicting objects
predict_typed_preds_optimized(df, model, tokenizer, device, 'inputs22', batch_size=batch_size)
print('Sample from inputs12:')
print(df['inputs12'].head())
print('Sample from inputs21:')
print(df['inputs21'].head())
scores1 = []
scores2 = []
for i, row in df.iterrows():
if partial_match(row['pred12'], row[subject]) and row['pred12'].strip().lower() != row['pred11'].strip().lower():
scores1.append(1)
else:
scores1.append(0)
if partial_match(row['pred22'], row[object]) and row['pred22'].strip().lower() != row['pred21'].strip().lower():
scores2.append(1)
else:
scores2.append(0)
df['score1'] = scores1
df['score2'] = scores2
df.to_csv('./results_ar_lms/results_{}_{}.csv'.format(MODEL_NAME.replace('/', '_'), RELATION), index=False)
with open('results_ar_lms.csv', 'a') as f:
f.write('{}, {}, {}, {}, {}\n'.format(MODEL_NAME, RELATION, len(df), np.mean(scores1+scores2), np.mean(np.bitwise_and(scores1, scores2))))
def main():
parser = argparse.ArgumentParser(description="Example script to capture arguments and pass to a method")
parser.add_argument("--model", required=True, type = str, help="e.g., 'bert-base-uncased'")
parser.add_argument("--relation", required=True, type=str, help="relation")
parser.add_argument("--bs", required=True, type=int, help="batch size")
args = parser.parse_args()
run(args.model, args.relation, args.bs)
if __name__ == '__main__':
main()