description |
---|
强化学习 让我以另一种方式玩游戏吧 |
DQN in Pytorch Stream 3 of N | Atari Breakout + Logging and Monitoring
DeepMind Made A Superhuman AI For 57 Atari Games! 🕹 Two Minute Papers
Python Flappy Bird AI Tutorial (with NEAT) - Creating the Bird
A.I. Flappy Bird without Libraries from SCRATCH (Python/PyCharm) Max Teaches Tech
How to Solve a Basic Reinforcement Learning Example | RL Hello World
An introduction to Reinforcement Learning
腾讯开悟(s, ) | Reinforcement Learning(quora, ) |
TutsNode.com |
OpenAI(site, git, Baselines, GPT-3) openai Research index s |
OpenAI CEO, CTO on risks and how AI will reshape society ABC News |
Sam Altman: OpenAI CEO on GPT-4, ChatGPT, and the Future of AI | Lex Fridman Podcast #367 |
Breakthrough potential of AI | Sam Altman | MIT 2023 Imagination in Action |
OpenAI CEO Sam Altman testifies at Senate artificial intelligence hearing | full video CBS News |
LIVE: OpenAI CEO Sam Altman testifies during Senate hearing on AI oversight — 05/16/23 CNBC Television |
Open AI CEO第一次国会听证会内容介绍 Jeff科技视角 |
【OpenAI】萨姆奥特曼 Sam Altman出席国会听证会 | 积极拥抱政府监管 | AI企业要上牌照 | 建议成立国际组织 | AI将创造更多就业 | 不为赚钱只因热爱 最佳拍档 |
Yuxi Li(u, ) | Code Bullet(u, ) |
ClarityCoders u | Greer Viau(u, ) |
DeepMind u | Machine Learning with Phil u |
Lex Fridman u | 蓝仔的十八般武艺 抖音号: lanzai8888 |
Shusen Wang u en | AI探长 抖音号: AITanzhang |
Yifei Hu u | Emergent Garden u |
学渣程序员 抖音号:67129424878 | Edan Meyer u |
AI Prism u | Saasha Nair u |
Pourquoi (布瓜的世界) u | |
强化学习基础(本科课程)-北京邮电大学 刘先生 |
秒懂强化学习 Reinforcement Learning 莫烦Python |
强化学习 Reinforcement Learning Python 教学 教程 莫烦Python |
什么是深度强化学习(DRL)?【知多少】 KnowingAI知智 |
什么是强化学习(Reinforcement Learning)?【知多少】KnowingAI知智 |
在Unity環境中訓練強化學習AI! AI葵 |
Tim & Heinrich — Democraticizing Reinforcement Learning Research Weights & Biases |
Train AI to Play Snake – Reinforcement Learning Course (Python, PyTorch, Pygame) freeCodeCamp |
Reinforcement learning with Snake-RL - Made with TensorFlow.js TensorFlow |
Algorithmic SNAKES! (AI compilation) AlphaPhoenix |
How does electricity find the "Path of Least Resistance"? AlphaPhoenix |
贪吃蛇游戏数学算法人工智能AI创造世界纪录 Oziter茅 哈密尔顿回路 |
代码编程 Oziter茅 华容道 |
分步详解C语言贪吃蛇游戏 大雄的公开课 |
【Python】60行搞定贪吃蛇小游戏 Bennett Poitier |
【python游戏编程教程】【小白友好版】贪吃蛇 Stephanie_程序媛 五子棋 三子棋 联机 |
我用30天写了一个完美的贪吃蛇AI 林亦LYi |
MIT 6.S191: Reinforcement Learning Alexander Amini list |
AI Learns to Play Normalized Nerd |
Deep Maths - machine learning and mathematics Oxford Mathematics |
Using AI to accelerate scientific discovery - Demis Hassabis (Crick Insight Lecture Series) |
DeepMind x UCL | Reinforcement Learning Course 2018 DeepMind |
Alpha Go weibin zhuang |
CS885 Reinforcement Learning - Spring 2020 Pascal Poupart |
CS885 Reinforcement Learning - Spring 2018 - University of Waterloo Pascal Poupart |
CS234: Reinforcement Learning |
深度强化学习完整版-2020秋-UC Berkeley CS285 by Sergey Levine Math4AI |
Reinforcement Learning with Python(Nicholas Renotte) |
A.I. Learns to play Flappy Bird(Code Bullet) |
AI Learns to play... Code Bullet |
AI is programmed to play... Code Bullet |
AI Plays Flappy Bird - NEAT Python Tech With Tim |
Python Pong AI Tutorial - Using NEAT Tech With Tim |
Neural Network Learns to Play Snake Greer Viau |
Reinforcement Learning Yannic Kilcher RE•WORK NPTEL-NOC IITM |
Reinforcement Learning - Goal Oriented Intelligence deeplizard |
Reinforcement Learning - Developing Intelligent Agents deeplizard |
MarI/O - Machine Learning for Video Games SethBling |
MarIQ -- Q-Learning Neural Network for Mario Kart -- 2M Sub Special SethBling |
Reinforcement Learning - David Silver |
Reinforcement Learning by David Silver 道法自然 |
Reinforcement Learning - Emma Brunskill | Stanford - OnlineHub Rahul Madhavan |
reinforcement learning Matlab Raony Maia Fontes |
秒懂强化学习 Reinforcement Learning 莫烦Python |
强化学习基础(张志华)-北京大学 刘先生 |
深度强化学习基础 Shusen Wang |
决胜AI-强化学习实战系列视频课程 唐宇迪 网易云课堂 |
讓人工智慧玩捉迷藏,最後居然發展出連人類都想不到的策略!? | 一探啾竟 第80集 | 啾啾鞋 |
OpenAI Plays Hide and Seek…and Breaks The Game! 🤖 Two Minute Papers |
這是我看過最廢的人工智慧了... 啾啾鞋 |
CS 294-112 Deep Reinforcement Learning UC Berkeley coursehero eecs CAL ESG - EECS reddit |
Python Bots Playing Games and More!! ClarityCoders |
A.I. Battles ClarityCoders |
Python Reinforcement Learning using Gymnasium – Full Course freeCodeCamp |
Reinforcement Learning Course: Intro to Advanced Actor Critic Methods freeCodeCamp |
Reinforcement Learning Course - Full Machine Learning Tutorial freeCodeCamp |
Python AI Learns to Play the Chrome Dinosaur Game | Made with Pygame and NEAT enigma git |
Build a Chrome Dino Game AI Model with Python | AI Learns to Play Dino Game Nicholas Renotte |
Python A.I. (N.E.A.T.) Max teaches Tech Chrome Dinosaur in Pygame Max teaches Tech Pygame Tutorials Max teaches Tech |
Python AI Learns To Play Flappy Bird! | Python NEAT and Pygame enigma git |
Flappy Bird Tutorial Max teaches Tech |
Intro to Reinforcement Learning 强化学习纲要 Bolei Zhou git |
Reinforcement Learning sentdex |
Reinforcement Learning with Stable Baselines 3 sentdex |
Physics Simulator w/ Robot Dog sentdex |
Starcraft 2 AI sentdex |
永不坠落的小鸟—游戏中的人工智能 开发者学堂 |
An introduction to Reinforcement Learning Arxiv Insights |
Reinforcement Learning with sparse rewards Arxiv Insights |
An introduction to Policy Gradient methods - Deep Reinforcement Learning Arxiv Insights |
Learning to Walk via Deep Reinforcement Learning Jie Tan |
Equivariant RL Simons Institute |
What is the Statistical Complexity of Reinforcement Learning? 强化学习的统计复杂性 |
AI Learns To Draw New Pokemon Jabrils |
Making My First Machine Learning Game Jabrils |
Advanced Topics in Reinforcement Learning DeepPavlov |
This AI Learned Boxing…With Serious Knockout Power! 🥊 Two Minute Papers Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports Meta Research |
Deep Reinforcement Learning in Python Tutorial - A Course on How to Implement Deep Learning Papers freeCodeCamp |
Q Learning In Reinforcement Learning | Q Learning Example | Machine Learning Tutorial | Simplilearn |
Artificial Intelligence Lessons Dr. Daniel Soper |
Reinforcement Learning Steve Brunton |
Reinforcement learning with TensorFlow Agents TensorFlow |
TensorFlow and deep reinforcement learning, without a PhD (Google I/O '18) TensorFlow |
The fastest matrix multiplication algorithm Dr. Trefor Bazett |
Deep Reinforcement Learning: CS 285 Fall 2021 (UC Berkeley) RAIL |
Deep Reinforcement Learning: CS 285 Fall 2020 RAIL |
David Silver: AlphaGo, AlphaZero, and Deep Reinforcement Learning | Lex Fridman Podcast #86 Lex Fridman |
AI's Game Playing Challenge - Computerphile |
Google's Deep Mind Explained! - Self Learning A.I. ColdFusion |
Teach AI To Play Snake! Reinforcement Learning With PyTorch and Pygame Python Engineer |
Download Practical AI with Python and Reinforcement Learning tut4dev |
NVIDIA’s New AI Trained For 10 Years! But How? 🤺 Two Minute Papers |
NVIDIA’s AI Plays Minecraft After 33 Years of Training! 🤖 Two Minute Papers |
DeepMind Makes Prototyping Papers Easy with ACME Machine Learning with Phil |
Deep Reinforcement Learning Tutorials - All Videos Machine Learning with Phil |
Advanced Actor Critic and Policy Gradient Methods Machine Learning with Phil |
Learning RL Algorithms via ML Edan Meyer |
Research Talk: Dueling network architectures for deep reinforcement learning Stanford Scholar |
Tutorial - Search Solutions 2020 - IRSG BCS Member Groups |
혁펜하임의 “트이는” 강화 학습 (Reinforcement learning) 혁펜하임 |
Code Frozen Game Using Reinforcement Learning | OpenAI Gym | Python Project AI Sciences |
Creating binance trading bot GUI | Python | Live trading AI Sciences |
Fundamentals of Reinforcement Learning AI Sciences |
深度強化學習簡介 (Deep Reinforcement Learning) Kuan-Ting Lai |
Taipei Tech Deep Reinforcement Learning Kuan-Ting Lai |
Ubisoft’s New AI: Breathing Life Into Games! Two Minute Papers |
Superintelligence: Science or Fiction? | Elon Musk & Other Great Minds Future of Life Institute |
Reinforcement Learning in 3 Hours |
Reinforcement Learning Fundamentals Mutual Information |
Reinforcement Learning AI Insights - Rituraj Kaushik |
[Tutorialsplanet.NET] Udemy - Advanced AI Deep Reinforcement Learning in Python |
[Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python [Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python |
Reinforcement Learning Krish Naik |
Data-driven Optimization Workshop: Deep Reinforcement Learning in Supply Chain Optimizations Microsoft Research |
【强化学习的数学原理】课程视频合集(从零开始透彻理解强化学习)Aerial robotics @ Westlake University |
Talk | 悉尼科技大学在读博士生胡思逸:MARLlib,全新的多智能体强化学习框架 将门-TechBeat技术社区 |
Reinforcement Learning for Simple UAV Navigation Huy Pham |
Reinforcement Learning: An Introduction pdf stanford Second edition, in progress 强化学习是一种机器学习的类型,涉及代理通过反复试验来学习如何在环境中做出决策。代理的目标是最大化由环境给出的奖励信号。代理学习采取导致最大可能奖励的行动,同时避免导致负面结果的行动。 Richard S. Sutton和Andrew G. Barto的《强化学习导论》一书全面介绍了强化学习领域。该书涵盖价值函数、蒙特卡罗方法、时序差分学习和策略梯度等主题。 该书的第一版于1998年出版,第二版目前正在编写中。第二版根据领域内最新进展更新了材料,并增加了有关深度强化学习和多智能体强化学习的新章节。 该书被广泛认为是关于强化学习的最权威的文本之一,并被该领域的研究人员和实践者用作参考。它适合本科和研究生学生,并为任何对学习或从事强化学习感兴趣的人提供了坚实的基础。 |
Learning From Passive Data Explained Edan Meyer |
DQN |
---|
Playing Atari with Deep Reinforcement Learning arxiv pdf pdf 2013.12 |
Reinforcement Learning - Ep. 30 (Deep Learning SIMPLIFIED) DeepLearning.TV |
CURL: Contrastive Unsupervised Representations for Reinforcement Learning Machine Learning Street Talk |
RLHF |
---|
Reinforcement Learning from Human Feedback: From Zero to chatGPT HuggingFace |
John Schulman - Reinforcement Learning from Human Feedback: Progress and Challenges Berkeley EECS |
How ChatGPT works - From Transformers to Reinforcement Learning with Human Feedback (RLHF) John Tan Chong Min |
RLHF+CHATGPT: What you must know Machine Learning Street Talk |
AI Safety, RLHF, and Self-Supervision - Jared Kaplan | Stanford MLSys #79 Stanford MLSys Seminars |
【分享】State of GPT(GPT的现状)中文字幕精校版 | Andrej Karpathy 微软Build大会精彩演讲 | GPT状态和原理 | 解密OpenAI模型训练 最佳拍档 |
【機器學習 2023】(生成式 AI) Hung-yi Lee |
PPO |
---|
RL — Proximal Policy Optimization (PPO) Explained medium |
强化学习与ChatGPT:PPO 算法介绍和实际应用(中文介绍) Pourquoi (布瓜的世界) |
Python Reinforcement Learning using Stable baselines. Mario PPO ClarityCoders |
Evolution |
---|
Google AI Simulates Evolution On A Computer! 🦖 Two Minute Papers |
【人工智能】具身智能:下一个AI浪潮 | 稚晖君 | Embodied AI | 什么是具身智能 | 目前发展阶段 | 挑战与困难 | 智元远征A1机器人 最佳拍档 |
Voyager |
---|
【人工智能】全新AI智能体Voyager | 自己学会玩minecraft | 全场景终身学习 | 性能完胜AutoGPT | 英伟达Nvidia最新发布 | NPC取代人类玩家 最佳拍档 无梯度架构 终身学习 |
arxiv MineDojo/Voyager |
NVIDIA’s New AI Mastered Minecraft 15X Faster! Two Minute Papers |
DQN_HollowKnight(git, v, ) |
快手斗地主 DouZero(arxiv, git, s, reddit, paperswithcode, dczha, ) v |
俄罗斯方块Tetris AI Learns to Play Tetris [Cocos Creator/TypeScript] Archi Tsai |
Coding Adventure: Chess AI Sebastian Lague |
How To Hack The Google Chrome Dinosaur Game [PYTHON] | Only 10 Lines Of Coding | Pyautogui | Numpy Know-How |
Deep Reinforcement Learning in Python Tutorial freeCodeCamp |
AI's Game Playing Challenge - Computerphile |
AlphaStar: The inside story DeepMind |
David Silver: AlphaGo, AlphaZero, and Deep Reinforcement Learning | Lex Fridman Podcast #86 Lex Fridman |
AlphaZero from Scratch – Machine Learning Tutorial freeCodeCamp |
The story of AlphaGo DeepMind |
AlphaGo full movie HD Zucci |
阿尔法狗用什么算法击败李世石?《阿尔法围棋》 | 看电影了没 |
DeepMind AlphaStar Analysis and Impressions (StarCraft II) brownbear |
StarCraft 2: Google DeepMind AlphaStar (A.I.) vs Pro Gamer! LowkoTV |
Reinforcement Learning for Stock Prediction Siraj Raval |
DeepMind's New AI: As Smart As An Engineer... Kind Of! 🤯 Two Minute Papers |
Artificial Intelligence & Machine Learning ForrestKnight |
Coding Challenge #71: Minesweeper The Coding Train |
How to play Minesweeper Eric Buffington |
Python Game Development Project Using OOP – Minesweeper Tutorial (w/ Tkinter) freeCodeCamp |
蘑菇书 Easy RL 强化学习教程 s epubit datawhalechina/easy-rl errata db |
alibaba/EasyReinforcementLearning |
Reinforcement Learning in 3 Hours | Full Course using Python Nicholas Renotte |
Discovering novel algorithms with AlphaTensor deepmind v |
Deepmind AlphaTensor Algorithmic Discovery with AI | Paper + Code Simon Lermen AI |
【線性代數 2022 (課程補充)】AlphaTensor: 用增強式學習 (Reinforcement Learning) 找出更有效率的矩陣相乘演算法 Hung-yi Lee |
DRL, Deep Reinforcement Learning, 2018 Hung-yi Lee ML Lecture 23-1: Deep Reinforcement Learning Hung-yi Lee Machine Learning (Hung-yi Lee, NTU) Hung-yi Lee |
This is a game changer! (AlphaTensor by DeepMind explained) Yannic Kilcher |
AlphaFold 2 论文精读【论文精读】 Mu Li |
Deep Reinforcement Learning with OpenAI Gym in Python NeuralNine |
格斗之王!AI写出来的AI竟然这么强! 林亦LYi |
DeepMind’s AI Athletes Play In The Real World! Two Minute Papers colab |
AirSim |
---|
AirSim是由微软开发的一个开源的模拟器,用于模拟无人机、汽车和机器人等各种类型的机器人的行为和环境。它提供了高度可定制的环境,允许用户在虚拟场景中测试各种机器人算法,包括视觉SLAM、路径规划、控制等等。 AirSim的最大特点是其高度逼真的图形渲染引擎和物理模拟引擎。它使用了虚幻引擎作为渲染引擎,并使用了现代计算机图形学技术来模拟各种物理现象,例如惯性、空气阻力、摩擦力等等,以使得机器人在仿真环境中的行为和现实世界中的行为尽量相似。 AirSim还提供了一套API,使得用户可以轻松地控制和监测机器人的状态。这些API可以用C++、Python和ROS等语言和框架进行访问。 总之,AirSim为机器人研究和开发人员提供了一个快速、高效、低成本的测试平台,可以加速机器人技术的发展。 |
rl + 无人机 |
{% file src="../.gitbook/assets/Bilgin E. Mastering Reinforcement Learning with Python 2021.pdf" %}