Closed
Description
The two DataFrames are from 2014, but from the figure you can see that pandas throws one of them to the year 2050!
I am using pandas 0.15.2 and the notebook below describes the problem and show a few workarounds that might help debug this:
http://nbviewer.ipython.org/gist/ocefpaf/e7e085c84fd3ea7dbc24
Here is a quick SSCCE to generate the figure above:
import numpy as np
import pandas as pd
index = pd.date_range(start='2014-06-01 00:00:00', end='2014-09-01 00:00:00', freq='H')
data = np.random.rand(len(index))
df0 = pd.DataFrame(data=data, index=index, columns=['DF0'])
index = pd.date_range(start='2014-04-07 10:57:00', end='2014-10-29 09:32:00', freq='D')
data = np.random.rand(len(index))
df1 = pd.DataFrame(data=data, index=index, columns=['DF1'])
ax = df0.plot(legend=True, figsize=(12, 4))
ax = df1.plot(ax=ax)
Thanks!