@@ -83,16 +83,16 @@ def test_nanminmax(self, opname, dtype, val, index_or_series):
8383 # GH#7261
8484 klass = index_or_series
8585
86- if dtype in ["Int64" , "boolean" ] and klass == pd . Index :
86+ if dtype in ["Int64" , "boolean" ] and klass == Index :
8787 pytest .skip ("EAs can't yet be stored in an index" )
8888
8989 def check_missing (res ):
9090 if dtype == "datetime64[ns]" :
91- return res is pd . NaT
91+ return res is NaT
9292 elif dtype == "Int64" :
9393 return res is pd .NA
9494 else :
95- return pd . isna (res )
95+ return isna (res )
9696
9797 obj = klass ([None ], dtype = dtype )
9898 assert check_missing (getattr (obj , opname )())
@@ -120,15 +120,15 @@ def test_nanargminmax(self, opname, index_or_series):
120120 klass = index_or_series
121121 arg_op = "arg" + opname if klass is Index else "idx" + opname
122122
123- obj = klass ([pd . NaT , datetime (2011 , 11 , 1 )])
123+ obj = klass ([NaT , datetime (2011 , 11 , 1 )])
124124 assert getattr (obj , arg_op )() == 1
125125 result = getattr (obj , arg_op )(skipna = False )
126126 if klass is Series :
127127 assert np .isnan (result )
128128 else :
129129 assert result == - 1
130130
131- obj = klass ([pd . NaT , datetime (2011 , 11 , 1 ), pd . NaT ])
131+ obj = klass ([NaT , datetime (2011 , 11 , 1 ), NaT ])
132132 # check DatetimeIndex non-monotonic path
133133 assert getattr (obj , arg_op )() == 1
134134 result = getattr (obj , arg_op )(skipna = False )
@@ -145,8 +145,8 @@ def test_nanops_empty_object(self, opname, index_or_series, dtype):
145145
146146 obj = klass ([], dtype = dtype )
147147
148- assert getattr (obj , opname )() is pd . NaT
149- assert getattr (obj , opname )(skipna = False ) is pd . NaT
148+ assert getattr (obj , opname )() is NaT
149+ assert getattr (obj , opname )(skipna = False ) is NaT
150150
151151 with pytest .raises (ValueError , match = "empty sequence" ):
152152 getattr (obj , arg_op )()
@@ -170,13 +170,13 @@ def test_argminmax(self):
170170 assert obj .argmin (skipna = False ) == - 1
171171 assert obj .argmax (skipna = False ) == - 1
172172
173- obj = Index ([pd . NaT , datetime (2011 , 11 , 1 ), datetime (2011 , 11 , 2 ), pd . NaT ])
173+ obj = Index ([NaT , datetime (2011 , 11 , 1 ), datetime (2011 , 11 , 2 ), NaT ])
174174 assert obj .argmin () == 1
175175 assert obj .argmax () == 2
176176 assert obj .argmin (skipna = False ) == - 1
177177 assert obj .argmax (skipna = False ) == - 1
178178
179- obj = Index ([pd . NaT ])
179+ obj = Index ([NaT ])
180180 assert obj .argmin () == - 1
181181 assert obj .argmax () == - 1
182182 assert obj .argmin (skipna = False ) == - 1
@@ -186,7 +186,7 @@ def test_argminmax(self):
186186 def test_same_tz_min_max_axis_1 (self , op , expected_col ):
187187 # GH 10390
188188 df = DataFrame (
189- pd . date_range ("2016-01-01 00:00:00" , periods = 3 , tz = "UTC" ), columns = ["a" ]
189+ date_range ("2016-01-01 00:00:00" , periods = 3 , tz = "UTC" ), columns = ["a" ]
190190 )
191191 df ["b" ] = df .a .subtract (Timedelta (seconds = 3600 ))
192192 result = getattr (df , op )(axis = 1 )
@@ -262,13 +262,13 @@ def test_minmax_timedelta64(self):
262262 def test_minmax_timedelta_empty_or_na (self , op ):
263263 # Return NaT
264264 obj = TimedeltaIndex ([])
265- assert getattr (obj , op )() is pd . NaT
265+ assert getattr (obj , op )() is NaT
266266
267- obj = TimedeltaIndex ([pd . NaT ])
268- assert getattr (obj , op )() is pd . NaT
267+ obj = TimedeltaIndex ([NaT ])
268+ assert getattr (obj , op )() is NaT
269269
270- obj = TimedeltaIndex ([pd . NaT , pd . NaT , pd . NaT ])
271- assert getattr (obj , op )() is pd . NaT
270+ obj = TimedeltaIndex ([NaT , NaT , NaT ])
271+ assert getattr (obj , op )() is NaT
272272
273273 def test_numpy_minmax_timedelta64 (self ):
274274 td = timedelta_range ("16815 days" , "16820 days" , freq = "D" )
@@ -373,7 +373,7 @@ def test_minmax_tz(self, tz_naive_fixture):
373373
374374 # non-monotonic
375375 idx2 = DatetimeIndex (
376- ["2011-01-01" , pd . NaT , "2011-01-03" , "2011-01-02" , pd . NaT ], tz = tz
376+ ["2011-01-01" , NaT , "2011-01-03" , "2011-01-02" , NaT ], tz = tz
377377 )
378378 assert not idx2 .is_monotonic
379379
@@ -387,13 +387,13 @@ def test_minmax_tz(self, tz_naive_fixture):
387387 def test_minmax_nat_datetime64 (self , op ):
388388 # Return NaT
389389 obj = DatetimeIndex ([])
390- assert pd . isna (getattr (obj , op )())
390+ assert isna (getattr (obj , op )())
391391
392- obj = DatetimeIndex ([pd . NaT ])
393- assert pd . isna (getattr (obj , op )())
392+ obj = DatetimeIndex ([NaT ])
393+ assert isna (getattr (obj , op )())
394394
395- obj = DatetimeIndex ([pd . NaT , pd . NaT , pd . NaT ])
396- assert pd . isna (getattr (obj , op )())
395+ obj = DatetimeIndex ([NaT , NaT , NaT ])
396+ assert isna (getattr (obj , op )())
397397
398398 def test_numpy_minmax_integer (self ):
399399 # GH#26125
@@ -449,7 +449,7 @@ def test_numpy_minmax_range(self):
449449 # is the same as basic integer index
450450
451451 def test_numpy_minmax_datetime64 (self ):
452- dr = pd . date_range (start = "2016-01-15" , end = "2016-01-20" )
452+ dr = date_range (start = "2016-01-15" , end = "2016-01-20" )
453453
454454 assert np .min (dr ) == Timestamp ("2016-01-15 00:00:00" , freq = "D" )
455455 assert np .max (dr ) == Timestamp ("2016-01-20 00:00:00" , freq = "D" )
@@ -588,7 +588,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
588588 assert result == unit
589589
590590 result = getattr (s , method )(min_count = 1 )
591- assert pd . isna (result )
591+ assert isna (result )
592592
593593 # Skipna, default
594594 result = getattr (s , method )(skipna = True )
@@ -599,13 +599,13 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
599599 assert result == unit
600600
601601 result = getattr (s , method )(skipna = True , min_count = 1 )
602- assert pd . isna (result )
602+ assert isna (result )
603603
604604 result = getattr (s , method )(skipna = False , min_count = 0 )
605605 assert result == unit
606606
607607 result = getattr (s , method )(skipna = False , min_count = 1 )
608- assert pd . isna (result )
608+ assert isna (result )
609609
610610 # All-NA
611611 s = Series ([np .nan ], dtype = dtype )
@@ -618,7 +618,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
618618 assert result == unit
619619
620620 result = getattr (s , method )(min_count = 1 )
621- assert pd . isna (result )
621+ assert isna (result )
622622
623623 # Skipna, default
624624 result = getattr (s , method )(skipna = True )
@@ -629,7 +629,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
629629 assert result == unit
630630
631631 result = getattr (s , method )(skipna = True , min_count = 1 )
632- assert pd . isna (result )
632+ assert isna (result )
633633
634634 # Mix of valid, empty
635635 s = Series ([np .nan , 1 ], dtype = dtype )
@@ -657,18 +657,18 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
657657
658658 s = Series ([1 ], dtype = dtype )
659659 result = getattr (s , method )(min_count = 2 )
660- assert pd . isna (result )
660+ assert isna (result )
661661
662662 result = getattr (s , method )(skipna = False , min_count = 2 )
663- assert pd . isna (result )
663+ assert isna (result )
664664
665665 s = Series ([np .nan ], dtype = dtype )
666666 result = getattr (s , method )(min_count = 2 )
667- assert pd . isna (result )
667+ assert isna (result )
668668
669669 s = Series ([np .nan , 1 ], dtype = dtype )
670670 result = getattr (s , method )(min_count = 2 )
671- assert pd . isna (result )
671+ assert isna (result )
672672
673673 @pytest .mark .parametrize ("method, unit" , [("sum" , 0.0 ), ("prod" , 1.0 )])
674674 def test_empty_multi (self , method , unit ):
@@ -716,7 +716,7 @@ def test_ops_consistency_on_empty(self, method):
716716
717717 # float
718718 result = getattr (Series (dtype = float ), method )()
719- assert pd . isna (result )
719+ assert isna (result )
720720
721721 # timedelta64[ns]
722722 tdser = Series ([], dtype = "m8[ns]" )
@@ -732,7 +732,7 @@ def test_ops_consistency_on_empty(self, method):
732732 getattr (tdser , method )()
733733 else :
734734 result = getattr (tdser , method )()
735- assert result is pd . NaT
735+ assert result is NaT
736736
737737 def test_nansum_buglet (self ):
738738 ser = Series ([1.0 , np .nan ], index = [0 , 1 ])
@@ -770,10 +770,10 @@ def test_sum_overflow(self, use_bottleneck):
770770 def test_empty_timeseries_reductions_return_nat (self ):
771771 # covers GH#11245
772772 for dtype in ("m8[ns]" , "m8[ns]" , "M8[ns]" , "M8[ns, UTC]" ):
773- assert Series ([], dtype = dtype ).min () is pd . NaT
774- assert Series ([], dtype = dtype ).max () is pd . NaT
775- assert Series ([], dtype = dtype ).min (skipna = False ) is pd . NaT
776- assert Series ([], dtype = dtype ).max (skipna = False ) is pd . NaT
773+ assert Series ([], dtype = dtype ).min () is NaT
774+ assert Series ([], dtype = dtype ).max () is NaT
775+ assert Series ([], dtype = dtype ).min (skipna = False ) is NaT
776+ assert Series ([], dtype = dtype ).max (skipna = False ) is NaT
777777
778778 def test_numpy_argmin (self ):
779779 # See GH#16830
@@ -820,7 +820,7 @@ def test_idxmin(self):
820820
821821 # skipna or no
822822 assert string_series [string_series .idxmin ()] == string_series .min ()
823- assert pd . isna (string_series .idxmin (skipna = False ))
823+ assert isna (string_series .idxmin (skipna = False ))
824824
825825 # no NaNs
826826 nona = string_series .dropna ()
@@ -829,10 +829,10 @@ def test_idxmin(self):
829829
830830 # all NaNs
831831 allna = string_series * np .nan
832- assert pd . isna (allna .idxmin ())
832+ assert isna (allna .idxmin ())
833833
834834 # datetime64[ns]
835- s = Series (pd . date_range ("20130102" , periods = 6 ))
835+ s = Series (date_range ("20130102" , periods = 6 ))
836836 result = s .idxmin ()
837837 assert result == 0
838838
@@ -850,7 +850,7 @@ def test_idxmax(self):
850850
851851 # skipna or no
852852 assert string_series [string_series .idxmax ()] == string_series .max ()
853- assert pd . isna (string_series .idxmax (skipna = False ))
853+ assert isna (string_series .idxmax (skipna = False ))
854854
855855 # no NaNs
856856 nona = string_series .dropna ()
@@ -859,7 +859,7 @@ def test_idxmax(self):
859859
860860 # all NaNs
861861 allna = string_series * np .nan
862- assert pd . isna (allna .idxmax ())
862+ assert isna (allna .idxmax ())
863863
864864 from pandas import date_range
865865
@@ -1010,7 +1010,7 @@ def test_any_all_datetimelike(self):
10101010 def test_timedelta64_analytics (self ):
10111011
10121012 # index min/max
1013- dti = pd . date_range ("2012-1-1" , periods = 3 , freq = "D" )
1013+ dti = date_range ("2012-1-1" , periods = 3 , freq = "D" )
10141014 td = Series (dti ) - Timestamp ("20120101" )
10151015
10161016 result = td .idxmin ()
@@ -1030,8 +1030,8 @@ def test_timedelta64_analytics(self):
10301030 assert result == 2
10311031
10321032 # abs
1033- s1 = Series (pd . date_range ("20120101" , periods = 3 ))
1034- s2 = Series (pd . date_range ("20120102" , periods = 3 ))
1033+ s1 = Series (date_range ("20120101" , periods = 3 ))
1034+ s2 = Series (date_range ("20120102" , periods = 3 ))
10351035 expected = Series (s2 - s1 )
10361036
10371037 result = np .abs (s1 - s2 )
@@ -1108,35 +1108,35 @@ class TestDatetime64SeriesReductions:
11081108 @pytest .mark .parametrize (
11091109 "nat_ser" ,
11101110 [
1111- Series ([pd . NaT , pd . NaT ]),
1112- Series ([pd . NaT , Timedelta ("nat" )]),
1111+ Series ([NaT , NaT ]),
1112+ Series ([NaT , Timedelta ("nat" )]),
11131113 Series ([Timedelta ("nat" ), Timedelta ("nat" )]),
11141114 ],
11151115 )
11161116 def test_minmax_nat_series (self , nat_ser ):
11171117 # GH#23282
1118- assert nat_ser .min () is pd . NaT
1119- assert nat_ser .max () is pd . NaT
1120- assert nat_ser .min (skipna = False ) is pd . NaT
1121- assert nat_ser .max (skipna = False ) is pd . NaT
1118+ assert nat_ser .min () is NaT
1119+ assert nat_ser .max () is NaT
1120+ assert nat_ser .min (skipna = False ) is NaT
1121+ assert nat_ser .max (skipna = False ) is NaT
11221122
11231123 @pytest .mark .parametrize (
11241124 "nat_df" ,
11251125 [
1126- DataFrame ([pd . NaT , pd . NaT ]),
1127- DataFrame ([pd . NaT , Timedelta ("nat" )]),
1126+ DataFrame ([NaT , NaT ]),
1127+ DataFrame ([NaT , Timedelta ("nat" )]),
11281128 DataFrame ([Timedelta ("nat" ), Timedelta ("nat" )]),
11291129 ],
11301130 )
11311131 def test_minmax_nat_dataframe (self , nat_df ):
11321132 # GH#23282
1133- assert nat_df .min ()[0 ] is pd . NaT
1134- assert nat_df .max ()[0 ] is pd . NaT
1135- assert nat_df .min (skipna = False )[0 ] is pd . NaT
1136- assert nat_df .max (skipna = False )[0 ] is pd . NaT
1133+ assert nat_df .min ()[0 ] is NaT
1134+ assert nat_df .max ()[0 ] is NaT
1135+ assert nat_df .min (skipna = False )[0 ] is NaT
1136+ assert nat_df .max (skipna = False )[0 ] is NaT
11371137
11381138 def test_min_max (self ):
1139- rng = pd . date_range ("1/1/2000" , "12/31/2000" )
1139+ rng = date_range ("1/1/2000" , "12/31/2000" )
11401140 rng2 = rng .take (np .random .permutation (len (rng )))
11411141
11421142 the_min = rng2 .min ()
@@ -1150,7 +1150,7 @@ def test_min_max(self):
11501150 assert rng .max () == rng [- 1 ]
11511151
11521152 def test_min_max_series (self ):
1153- rng = pd . date_range ("1/1/2000" , periods = 10 , freq = "4h" )
1153+ rng = date_range ("1/1/2000" , periods = 10 , freq = "4h" )
11541154 lvls = ["A" , "A" , "A" , "B" , "B" , "B" , "C" , "C" , "C" , "C" ]
11551155 df = DataFrame ({"TS" : rng , "V" : np .random .randn (len (rng )), "L" : lvls })
11561156
0 commit comments