-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson_parse.py
301 lines (275 loc) · 13.8 KB
/
json_parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import json
import sys
from collections import defaultdict
import logging
import csv
import math
logging.basicConfig(filename='logfile.log',level=logging.DEBUG)
# -*- coding: utf-8 -*-
with open("/Users/gorkeralp/Dropbox/Okul/Research/QPU/kadikoy_yol.json") as data_file:
data = json.load(data_file)
#print type(data)
#print len(data)
#print data.keys()
#print (data)
#print type(coord)
print('------')
countX=0
countY=0
def FindNearestPointInMap(car_data):
processed_car_data = ProcessCarData(car_data)
minPoints = [10000,10000,10000]
closestPoints = [0,0,0]
grid_points = []
for index in range(len(processed_car_data)):
latGrid,longGrid = findGrid(processed_car_data[index][0],processed_car_data[index][1],minLattituteCoord,minLongtitudeCoord)
##point Tuple in the grid
grid_points.append(coord_gridid_dict[(latGrid,longGrid)]) ##points in coordinate
grid_points.append(coord_gridid_dict[(latGrid+1,longGrid)]) #east
grid_points.append(coord_gridid_dict[(latGrid-1,longGrid)]) #west
grid_points.append(coord_gridid_dict[(latGrid+1, longGrid+1)]) #ne
grid_points.append(coord_gridid_dict[(latGrid-1, longGrid+1)]) #nw
grid_points.append(coord_gridid_dict[(latGrid, longGrid+1)]) #north
grid_points.append(coord_gridid_dict[(latGrid, longGrid-1)]) #south
grid_points.append(coord_gridid_dict[(latGrid+1, longGrid-1)]) #southeast
grid_points.append(coord_gridid_dict[(latGrid-1, longGrid-1)]) #southeast
if not grid_points:
print str(processed_car_data[index][0]),str(processed_car_data[index][1])
logging.info('grid_points:'+str(grid_points))
for eachpoint in grid_points:
for eachtup in eachpoint:
res = Haversine(processed_car_data[index],eachtup) #first car points
if minPoints[index] > res:
minPoints[index] = res
closestPoints[index]=((eachtup,processed_car_data[index],res))
#haversine
print closestPoints
return closestPoints
def findGrid(lattitude,longtitude,minlattitude,minlongtitude): #takes normalized inputs
decPointLat = long(lattitude * 100000) - minlattitude
decPointLong = long(longtitude * 100000) - minlongtitude
decPointLat //= 65.13 #12.7207 #lattitute
decPointLong //= 93.77 #9.157 #longtitude
#gridnumber = decPointLat * 1024 + decPointLong
#ll / value #corresponds to value
#gridnum = long(ll / 2**grids)
return long(decPointLat),long(decPointLong)
def FillGPSInfo(lattitute1,longtitude1,lattitute2,longtitude2,yolId,minlatt,minlong):
gridlat1,gridlong1 = findGrid(lattitute1, longtitude1, minlatt,minlong)
gridlat2,gridlong2 = findGrid(lattitute2, longtitude2, minlatt,minlong)
#assert gridn1 > 0 or gridn2 > 0, "grid1n, grid2n is lt zero {} {},{} {},{} {}".format(gridn1, gridn2,lattitute1,longtitude1,lattitute2,longtitude2)
coord_yolid_dict[(lattitute1, longtitude1)].append(yolId)
coord_yolid_dict[(lattitute2, longtitude2)].append(yolId)
coord_prev_location_dict[(lattitute2, longtitude2)].append((lattitute1, longtitude1))
coord_gridid_dict[(gridlat1,gridlong1)].append((lattitute1,longtitude1))
coord_gridid_dict[(gridlat2,gridlong2)].append((lattitute2,longtitude2))
coord_loc_grid_dict[(lattitute2,longtitude2)].append((gridlat1,gridlong1))
coord_loc_grid_dict[(lattitute1,longtitude1)].append((gridlat1,gridlong1))
def ProcessCarData(cardata):
car_lattitute = float(cardata[0])
car_longtitute = float(cardata[1])
car_direction = cardata[2]
#'G?NEY','KUZEY','KUZEYBATI','DO?U','KUZEYDO?U','BATI','G?NEYDO?U','G?NEYBATI'
#a car is represented by three points
carpoint = []
if car_direction == "G?NEY":
carpoint.append((car_lattitute - 0.000045,car_longtitute))
carpoint.append((car_lattitute,car_longtitute))
carpoint.append((car_lattitute + 0.000045,car_longtitute))
elif car_direction == "KUZEY":
carpoint.append((car_lattitute + 0.000045, car_longtitute))
carpoint.append((car_lattitute, car_longtitute))
carpoint.append((car_lattitute - 0.000045, car_longtitute))
elif car_direction == "DO?U":
carpoint.append((car_lattitute, car_longtitute + 0.000060))
carpoint.append((car_lattitute, car_longtitute))
carpoint.append((car_lattitute, car_longtitute - 0.000060))
elif car_direction == "BATI":
carpoint.append((car_lattitute, car_longtitute - 0.000060))
carpoint.append((car_lattitute, car_longtitute))
carpoint.append((car_lattitute, car_longtitute + 0.000060))
elif car_direction == "KUZEYDO?U":
carpoint.append((car_lattitute + 0.000027, car_longtitute + 0.000048))
carpoint.append((car_lattitute, car_longtitute))
carpoint.append((car_lattitute - 0.000027, car_longtitute - 0.000048))
elif car_direction == "KUZEYBATI":
carpoint.append((car_lattitute + 0.000027, car_longtitute - 0.000048))
carpoint.append((car_lattitute, car_longtitute))
carpoint.append((car_lattitute - 0.000027, car_longtitute + 0.000048))
elif car_direction == "G?NEYDO?U":
carpoint.append((car_lattitute - 0.000027, car_longtitute + 0.000048))
carpoint.append((car_lattitute, car_longtitute))
carpoint.append((car_lattitute + 0.000027, car_longtitute - 0.000048))
elif car_direction == "G?NEYBATI":
carpoint.append((car_lattitute - 0.000027, car_longtitute - 0.000048))
carpoint.append((car_lattitute, car_longtitute))
carpoint.append((car_lattitute + 0.000027, car_longtitute + 0.000048))
return carpoint
def Haversine(tuple1,tuple2):
#define PI 3.14159265
#define R 6372795.477598
PI = 3.14159265
R = 6372795.477598
lat1 = float(tuple1[0]) * PI / 180
lat2 = float(tuple2[0]) * PI / 180
lon1 = float(tuple1[1]) * PI / 180
lon2 = tuple2[1] * PI / 180
dlon = lon2 - lon1;
dlat = lat2 - lat1;
a = (math.sin(dlat / 2)) * (math.sin(dlat / 2)) + math.cos(lat1) * math.cos(lat2) * (math.sin(dlon / 2)) * (math.sin(dlon / 2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
d = R * c
return d
def findVals(isX,index,arr,minx,miny,maxx,maxy,prevX,prevY,smallestDistX,smallestDistY,maxDistX,maxDistY):
if isX:
global countX
countX +=1
arrindex = arr[index]#(arr[index]-29) * 100000
if minx >= arrindex:
minx = arrindex
if maxx <= arrindex:
maxx = arrindex
if prevX == None:
prevX = arrindex
else:
#assert abs(prevX-arrindex) > 0, "values of prevX and arr: %f %f %f" % (prevX,arrindex, abs(prevX-arrindex))
if smallestDistX > (abs(prevX - arrindex)) and abs(prevX - arrindex) != 0:
smallestDistX = abs(prevX - arrindex)
if maxDistX <= (abs(prevX - arrindex)):
#print "maxX",prevX,arrindex
maxDistX = abs(prevX - arrindex)
else:
global countY
countY += 1
arrindex = arr[index]#(arr[index]-40) * 100000
if miny >= arrindex:
miny = arrindex
if maxy <= arrindex:
maxy = arrindex
if prevY == None:
prevY = arrindex
else:
#assert abs(prevY-arrindex) > 0, "values of prevY and arr: %f %f %f" % (prevY, arrindex, abs(prevY - arrindex))
if smallestDistY > (abs(prevY - arrindex)) and abs(prevY - arrindex) != 0:
smallestDistY = abs(prevY - arrindex)
if maxDistY <= (abs(prevY - arrindex)):
#print "maxY",prevY,arrindex
maxDistY = abs(prevY - arrindex)
return isX,minx,miny,maxx,maxy,prevX,prevY,smallestDistX,smallestDistY,maxDistX,maxDistY
file = open("newfile.txt", "w")
countX=0
countY=0
strs =""
minx= sys.float_info.max
miny =sys.float_info.max
maxx= 0
maxy =0
prevX = None
prevY =None
smallestDistX = 10000000
smallestDistY = 10000000
maxDistX = 0
maxDistY = 0
isX = True
pointCount=0
coord_yolid_dict = defaultdict(list)
coord_prev_location_dict = defaultdict(list)
coord_gridid_dict = defaultdict(list)
coord_loc_grid_dict = defaultdict(list)
callCount = 0
minLattituteCoord = 4095124 #40
minLongtitudeCoord = 2901658 #29
filegrid = open("grids.txt", "w")
for data_val in data['features']:
strs=""
id_yoladi = data_val['properties']['yolAdi']
strs+=id_yoladi.encode('utf-8')
strs+=','
id_yolid = float(data_val['properties']['yolId'])
strs += "{0:.0f}".format(id_yolid)
strs += ','
coord = data_val['geometry']['coordinates']
if data_val['geometry']['type'] == 'MultiLineString':
for upper_coord in range(len(coord)):
for inner_coord in range(3, len(coord[upper_coord]), 4): ##process two points at a time - 4coords
lat1, long1 = coord[upper_coord][inner_coord-2], coord[upper_coord][inner_coord-3]
lat2, long2 = coord[upper_coord][inner_coord], coord[upper_coord][inner_coord-1]
FillGPSInfo(lat1,long1,lat2,long2,id_yoladi,minLattituteCoord,minLongtitudeCoord)
callCount += 1
if len(coord[upper_coord]) % 4 != 0:
#print len(coord[inner_c]) % 4
lat1, long1 = coord[upper_coord][-3], coord[upper_coord][-4]
lat2, long2 = coord[upper_coord][-1], coord[upper_coord][-2]
FillGPSInfo(lat1,long1,lat2,long2,id_yoladi,minLattituteCoord,minLongtitudeCoord)
callCount += 1
else:
#print len(coord)
for inner_coord in range(3, len(coord), 4): ##process two points at a time - 4coords
lat1, long1 = coord[inner_coord-2],coord[inner_coord-3]
lat2, long2 = coord[inner_coord], coord[inner_coord-1]
FillGPSInfo(lat1, long1, lat2, long2, id_yoladi,minLattituteCoord,minLongtitudeCoord)
callCount += 1
if len(coord) % 4 != 0:
lat1, long1 = coord[-3], coord[-4]
lat2, long2 = coord[-1], coord[-2]
FillGPSInfo(lat1, long1, lat2, long2, id_yoladi,minLattituteCoord,minLongtitudeCoord)
callCount += 1
for inner_c in range(len(coord)):
if data_val['geometry']['type'] == 'MultiLineString':
for indexx in xrange(0,len(coord[inner_c])):
pointCount +=1
isX,minx, miny,maxx,maxy, prevX, prevY, smallestDistX, smallestDistY,maxDistX,maxDistY = findVals(isX,indexx, coord[inner_c], minx, miny,maxx,maxy, prevX, prevY, smallestDistX, smallestDistY,maxDistX,maxDistY)
isX = not isX
else:
pointCount += 1
isX,minx, miny,maxx,maxy, prevX, prevY, smallestDistX, smallestDistY,maxDistX,maxDistY = findVals(isX,inner_c, coord, minx, miny,maxx,maxy, prevX, prevY, smallestDistX, smallestDistY,maxDistX,maxDistY)
isX = not isX
valll = ','.join(str(item) for item in coord)
strs += valll #', '.join(str(item) for item in str(coord))
strs += "\n"
file.write(strs)
logging.info("smallestDistX:" + str(smallestDistX))
logging.info( "smallesDistY:" + str(smallestDistY))
logging.info( "maxDistX:" + str(maxDistX))
logging.info( "maxDistY:" + str(maxDistY))
logging.info( "minX:" + str(minx))
logging.info( "minY:" + str(miny))
logging.info( "maxX:" + str(maxx))
logging.info( "maxY:" + str(maxy))
logging.info( "No Of points: "+str(pointCount/2))
logging.info( countX)
logging.info( countY)
#logging.info( len(coord_gridid_dict.keys()))
logging.info( callCount)
logging.info(coord_loc_grid_dict[(40.98181,29.05821)])
minElement = 500
maxElement = 0
for keys,value in coord_gridid_dict.items():
if len(coord_gridid_dict[keys]) < minElement:
minElement = len(coord_gridid_dict[keys])
logging.info("min keys:" + str(keys) + " " + str(minElement))
if len(coord_gridid_dict[keys]) > maxElement:
maxElement = len(coord_gridid_dict[keys])
logging.info("max keys:" + str(keys) + " " + str(maxElement))
logging.info(minElement)
logging.info(maxElement)
logging.info(coord_gridid_dict.keys())
logging.info(coord_gridid_dict[5])
print "reading csv data..."
Directions = ['G?NEY','KUZEY','KUZEYBATI','DO?U','KUZEYDO?U','BATI','G?NEYDO?U','G?NEYBATI']
#lattitute +-90 is 10m
#longtitute +-12 is 10m
csv_link = "/Users/gorkeralp/Dropbox/Okul/Research/QPU/gps_data_csv/gps data1.csv"
with open(csv_link) as f:
car_gps_points = csv.reader(f)
for gps_point in car_gps_points:
break; #pass the initial row for signatures
for gps_point in car_gps_points:
car_data = [gps_point[5],gps_point[6],gps_point[9]] #lattitute,longtitude,direction
#first tuple point is where the car is headed
#second tuple point is the actual gps data
#third tuple point is the rear point
FindNearestPointInMap(car_data)
#gridn1, hashedCoord1 = findGrid(lat1, long1, 13, 13027)
#findGrid(processed_car_data[0])
##post processing based on direction and accuracy