diff --git a/pages/public_cloud/ai_machine_learning/deploy_tuto_05_gradio_sketch_recognition/guide.en-gb.md b/pages/public_cloud/ai_machine_learning/deploy_tuto_05_gradio_sketch_recognition/guide.en-gb.md index f24a5ee5701..9692a9bc371 100644 --- a/pages/public_cloud/ai_machine_learning/deploy_tuto_05_gradio_sketch_recognition/guide.en-gb.md +++ b/pages/public_cloud/ai_machine_learning/deploy_tuto_05_gradio_sketch_recognition/guide.en-gb.md @@ -87,7 +87,7 @@ Load the previously trained model for handwritten digits classification. > ```python -model = tf.keras.models.load_model("model/sketch_recognition_numbers_model.h5") +model = tf.keras.models.load_model("model/sketch_recognition_numbers_model.h5", compile=False) ``` Create the function that recognizes the written number. @@ -161,7 +161,7 @@ CMD [ "python3" , "/workspace/app.py" ] Launch the following command from the **Dockerfile** directory to build your application image: ```console -docker build . -t gradio_app:latest +docker buildx build --platform linux/amd64 -t gradio_app:latest ``` > [!primary] @@ -211,7 +211,7 @@ The following command starts a new AI Deploy app running your Gradio application ```console ovhai app run \ --cpu 1 \ - --volume @/:/workspace/model:RO \ + --volume @/model/:/workspace/model:RO \ /gradio_app:latest ```