-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm.py
53 lines (44 loc) · 2.26 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
# from scipy.optimize import minimize, Bounds
class SVM(object):
def __init__(self, num_input, sigma):
self.num_input = num_input
self.sigma = sigma
self.num_sample = 0
self.core = lambda x1, x2: np.exp(-np.linalg.norm(x1 - x2) / (2 * self.sigma ** 2))
self.alpha = None
self.bias = 0
self.x_train = None
self.label_train = None
def assign_alpha_and_bias(self, x, label):
self.num_sample = x.shape[1]
'''
def op_func(a):
return np.sum(a) - 0.5 * sum([sum([a[p] * a[q] * label[p] * label[q] * self.core(x[:, p], x[:, q])
for q in range(self.num_sample)]) for p in
range(self.num_sample)])
bounds = Bounds([0] * self.num_sample, [np.inf] * self.num_sample)
cons = {'type': 'eq', 'fun': lambda a: np.array([sum([label[p] * a[p] for p in range(self.num_sample)])])}
alpha = 1 * np.ones(self.num_sample)
op_res = minimize(op_func, alpha, method='SLSQP', constraints=cons, bounds=bounds)
self.alpha = op_res.x
'''
def get_core_matrix(sample, lb):
cm = np.zeros([self.num_sample, self.num_sample])
for row in range(self.num_sample):
for col in range(self.num_sample):
coefficient = 1. if row == col else 0.5
cm[row, col] = coefficient * lb[row] * lb[col] * self.core(sample[:, row], sample[:, col])
return cm
core_matrix = get_core_matrix(x, label)
self.alpha = np.linalg.inv(core_matrix) @ np.expand_dims(np.ones(self.num_sample), 1)
for idx, temp in enumerate(self.alpha):
if temp > 0:
self.bias = 1 / label[idx] - sum([self.alpha[p] * label[p] * self.core(x[:, p], x[:, idx])
for p in range(self.num_sample)])
break
self.x_train = x
self.label_train = label
def inference(self, x):
return np.sign(sum([self.label_train[p] * self.alpha[p] * self.core(self.x_train[:, p], x)
for p in range(self.num_sample)]) + self.bias)