We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
@deepcs233 你好,我在一台GPU上运行train.sh之后, 1、报File "train_pretrain.py", line 821, in call prob_det = torch.sigmoid(output[:, :, 0] * (1 - 2 * target[:, :, 0])) IndexError: too many indices for tensor of dimension 2这个问题 我把prob_det = torch.sigmoid(output[:, :, 0] * (1 - 2 * target[:, :, 0]))更改为 prob_det = torch.sigmoid(output[:, 0] * (1 - 2 * target[:, :, 0])) 再运行train.sh后遇到新的错误: 2、Loading image: /home/syl/LMDrive/autodl-tmp/DATASET_ROOT/data/routes_town02_long_w16_08_15_21_31_40/rgb_full/5235.jpg Loading image: /home/syl/LMDrive/autodl-tmp/DATASET_ROOT/data/routes_town02_long_w11_08_15_15_54_43/rgb_full/5449.jpg Traceback (most recent call last): File "train_pretrain.py", line 1873, in main() File "train_pretrain.py", line 1273, in main train_metrics = train_one_epoch( File "train_pretrain.py", line 1413, in train_one_epoch loss_traffic, loss_velocity = loss_fns["traffic"](output[0], target[4]) File "train_pretrain.py", line 821, in call prob_det = torch.sigmoid(output[:, 0] * (1 - 2 * target[:, :, 0])) RuntimeError: The size of tensor a (106) must match the size of tensor b (2500) at non-singleton dimension 1 ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 497603) of binary: /home/mepus/anaconda3/envs/lmdrive_pyc2.0.1_py3.8/bin/python3 Traceback (most recent call last): 问题1的修改是正确的吗?问题2有什么解决办法吗?期待您的快速回复
The text was updated successfully, but these errors were encountered:
在云服务器上训练就没事,在自己的本地电脑训练就出问题..
Sorry, something went wrong.
No branches or pull requests
@deepcs233
你好,我在一台GPU上运行train.sh之后,
1、报File "train_pretrain.py", line 821, in call
prob_det = torch.sigmoid(output[:, :, 0] * (1 - 2 * target[:, :, 0]))
IndexError: too many indices for tensor of dimension 2这个问题
我把prob_det = torch.sigmoid(output[:, :, 0] * (1 - 2 * target[:, :, 0]))更改为
prob_det = torch.sigmoid(output[:, 0] * (1 - 2 * target[:, :, 0]))
再运行train.sh后遇到新的错误:
2、Loading image: /home/syl/LMDrive/autodl-tmp/DATASET_ROOT/data/routes_town02_long_w16_08_15_21_31_40/rgb_full/5235.jpg
Loading image: /home/syl/LMDrive/autodl-tmp/DATASET_ROOT/data/routes_town02_long_w11_08_15_15_54_43/rgb_full/5449.jpg
Traceback (most recent call last):
File "train_pretrain.py", line 1873, in
main()
File "train_pretrain.py", line 1273, in main
train_metrics = train_one_epoch(
File "train_pretrain.py", line 1413, in train_one_epoch
loss_traffic, loss_velocity = loss_fns["traffic"](output[0], target[4])
File "train_pretrain.py", line 821, in call
prob_det = torch.sigmoid(output[:, 0] * (1 - 2 * target[:, :, 0]))
RuntimeError: The size of tensor a (106) must match the size of tensor b (2500) at non-singleton dimension 1
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 497603) of binary: /home/mepus/anaconda3/envs/lmdrive_pyc2.0.1_py3.8/bin/python3
Traceback (most recent call last):
问题1的修改是正确的吗?问题2有什么解决办法吗?期待您的快速回复
The text was updated successfully, but these errors were encountered: