Skip to content

Commit 9c8b9c0

Browse files
authored
Merge pull request #1 from omairaasim/master
Update multiple_linear_regression.py
2 parents a088209 + 11d1f6d commit 9c8b9c0

File tree

1 file changed

+5
-33
lines changed

1 file changed

+5
-33
lines changed

project_2_multiple_linear_regression/multiple_linear_regression.py

Lines changed: 5 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -13,12 +13,11 @@
1313
y = dataset.iloc[:,4].values
1414

1515
# Step 2 - Encode Categorical Data
16-
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
17-
labelEncoder_X = LabelEncoder()
18-
X[:,3] = labelEncoder_X.fit_transform(X[:,3])
19-
20-
oneHotEncoder = OneHotEncoder(categorical_features=[3])
21-
X = oneHotEncoder.fit_transform(X).toarray()
16+
from sklearn.preprocessing import OneHotEncoder
17+
from sklearn.compose import ColumnTransformer
18+
import numpy as np
19+
ct = ColumnTransformer(transformers=[('encoder',OneHotEncoder(),[3])], remainder='passthrough')
20+
X = np.array(ct.fit_transform(X))
2221

2322
# Step 3 - Dummy Trap
2423
X = X[:,1:]
@@ -34,30 +33,3 @@
3433

3534
# Step 6 - Predict
3635
y_pred = regressor.predict(X_test)
37-
38-
# Add ones
39-
import numpy as np
40-
ones = np.ones(shape = (50,1), dtype=int)
41-
X = np.append(arr = ones, values= X, axis=1)
42-
43-
# Backward Elimination
44-
import statsmodels.formula.api as sm
45-
X_opt = X[:,[0,1,2,3,4,5]]
46-
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
47-
regressor_OLS.summary()
48-
49-
X_opt = X[:,[0,1,3,4,5]]
50-
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
51-
regressor_OLS.summary()
52-
53-
X_opt = X[:,[0,3,4,5]]
54-
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
55-
regressor_OLS.summary()
56-
57-
X_opt = X[:,[0,3,5]]
58-
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
59-
regressor_OLS.summary()
60-
61-
X_opt = X[:,[0,3]]
62-
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
63-
regressor_OLS.summary()

0 commit comments

Comments
 (0)