|
13 | 13 | y = dataset.iloc[:,4].values |
14 | 14 |
|
15 | 15 | # Step 2 - Encode Categorical Data |
16 | | -from sklearn.preprocessing import LabelEncoder, OneHotEncoder |
17 | | -labelEncoder_X = LabelEncoder() |
18 | | -X[:,3] = labelEncoder_X.fit_transform(X[:,3]) |
19 | | - |
20 | | -oneHotEncoder = OneHotEncoder(categorical_features=[3]) |
21 | | -X = oneHotEncoder.fit_transform(X).toarray() |
| 16 | +from sklearn.preprocessing import OneHotEncoder |
| 17 | +from sklearn.compose import ColumnTransformer |
| 18 | +import numpy as np |
| 19 | +ct = ColumnTransformer(transformers=[('encoder',OneHotEncoder(),[3])], remainder='passthrough') |
| 20 | +X = np.array(ct.fit_transform(X)) |
22 | 21 |
|
23 | 22 | # Step 3 - Dummy Trap |
24 | 23 | X = X[:,1:] |
|
34 | 33 |
|
35 | 34 | # Step 6 - Predict |
36 | 35 | y_pred = regressor.predict(X_test) |
37 | | - |
38 | | -# Add ones |
39 | | -import numpy as np |
40 | | -ones = np.ones(shape = (50,1), dtype=int) |
41 | | -X = np.append(arr = ones, values= X, axis=1) |
42 | | - |
43 | | -# Backward Elimination |
44 | | -import statsmodels.formula.api as sm |
45 | | -X_opt = X[:,[0,1,2,3,4,5]] |
46 | | -regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit() |
47 | | -regressor_OLS.summary() |
48 | | - |
49 | | -X_opt = X[:,[0,1,3,4,5]] |
50 | | -regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit() |
51 | | -regressor_OLS.summary() |
52 | | - |
53 | | -X_opt = X[:,[0,3,4,5]] |
54 | | -regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit() |
55 | | -regressor_OLS.summary() |
56 | | - |
57 | | -X_opt = X[:,[0,3,5]] |
58 | | -regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit() |
59 | | -regressor_OLS.summary() |
60 | | - |
61 | | -X_opt = X[:,[0,3]] |
62 | | -regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit() |
63 | | -regressor_OLS.summary() |
0 commit comments