-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess2.py
190 lines (151 loc) · 6.92 KB
/
preprocess2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import wget
import pandas as pd
import numpy as np
import random
from pathlib import Path
import argparse
import time
import glob
import os
from patoolib import extract_archive
from pydub import AudioSegment as am
import concurrent.futures
#import progressbar
from args_file import args as args_default
from utils import make_dirs
from utils import collate_args
def dl_commonvoice_data(download_path, args, unpack=True):
r"""
Download common voice file from mozilla commonvoice repo
usage
-----
>> url = "https://mozilla-common-voice-datasets.s3.dualstack.us-west-2.amazonaws.com/cv-corpus-6.1-2020-12-11/pa-IN.tar.gz"
>> dl_commonvoice_data(download_path, args, unpack=True)
"""
if not os.path.exists(download_path+os.sep+args.get('RAW_AUDIO_PATH')):
file_name = download_path+os.sep+'rw.tar.gz'
if not os.path.isfile(file_name):
filename = wget.download(args.get('url'), download_path)
print(f"File sucessfully downloaded in dir {download_path}")
if unpack:
extract_archive(file_name, outdir=download_path, verbose=0)
print(f"file sucessfully unpacked in dir {download_path}")
else:
print('File already exists in dir {download_path}')
def get_audio_samples(audio_file, src_path,
dest_path, dest_frame_rate=16000):
"""Samples audio from "wav_file" path with specified frame rate"""
wav_file = str(Path(audio_file).stem) + ".wav"
dest_path = os.path.join(dest_path, wav_file)
# convert mp3 to wav
try:
sound = am.from_mp3(audio_file)
sound = sound.set_frame_rate(dest_frame_rate)
sound.export(dest_path, format="wav")
except Exception:
print(f'File {audio_file} unable to be processed')
return wav_file, 0
return wav_file, sound.duration_seconds
def download_n_subsample(args):
"""Download audio files, and resamples to required sampling rate
Args:
args (dict): Contains the arguments required for parsing directories
"""
curr_path = Path(__file__).parent.absolute()
download_path = str(curr_path)+os.sep+'..'+os.sep+args.get('DATA_FOLDER')
make_dirs(download_path)
sample_dest_path = download_path+os.sep+args.get('SAMPLED_DATA_FOLDER')
if len(os.listdir(sample_dest_path)) != 0: # if processed files not found..
if args.get('url'):
dl_commonvoice_data(download_path, args)
raw_audio_paths = args.get('RAW_AUDIO_PATH')
audio_files = glob.glob(download_path + os.sep + str(raw_audio_paths) + os.sep + "*.mp3")
sample_source_path = download_path + os.sep + str(raw_audio_paths)
sample_dest_path = download_path + os.sep + args.get('SAMPLED_DATA_FOLDER')
make_dirs(sample_dest_path)
processes = []
# subsample audio files using threads
with concurrent.futures.ThreadPoolExecutor() as executor:
all_futures = [executor.submit(get_audio_samples,
audio_file, sample_source_path,
sample_dest_path, 16000) for audio_file in audio_files]
results = [f.result() for f in all_futures]
# save audio path and duration in file
if not os.path.exists(
os.path.join(download_path, args.get('DURATION_SAV_FILE'))
):
print(f"Writing duration info to file {args.get('DURATION_SAV_FILE')}")
with open(os.path.join(download_path, args.get('DURATION_SAV_FILE')), "w+") as f:
for path, duration in results:
f.write(f"{path} {duration}")
f.write("\n")
def create_train_finetune_split(train_duration,
finetune_duration,
validation_duration, args):
curr_path = Path(__file__).parent.absolute()
data_path = str(curr_path)+os.sep+'..'+os.sep+args.get('DATA_FOLDER')
raw_audio_paths = args.get('RAW_AUDIO_PATH')
train_df = pd.read_csv(
os.path.join(data_path, raw_audio_paths, '..', 'train.tsv'),
sep='\t')
clips = {}
with open(data_path+os.sep+args.get('DURATION_SAV_FILE'), 'r') as f:
for line in f:
file_name, duration = line.split()
clips[file_name] = duration
train_df['path'] = train_df['path'].apply(
lambda x: x[:-4]+'.wav')
train_df['duration'] = train_df['path'].apply(
lambda x: clips.get(x, 0.0)) # TODO: Change this to zero
columns_to_select = ['path', 'sentence', 'gender', 'duration']
train_df = train_df[columns_to_select]
train_df = train_df.sample(frac=1,
random_state=args.get('SEED', 1234)).reset_index(drop=True)
start_index = 0
total_duration = 0.0
train = None
for i in range(start_index, len(train_df)):
if total_duration <= train_duration:
total_duration += float(train_df.iloc[i].duration)
else:
train = train_df[start_index:i].copy()
train.to_csv(data_path+os.sep+args.get('TRAIN_PS_CSV'), index=False)
print(f'{total_duration/3600}hrs training split done')
start_index = i
total_duration = 0
break
for i in range(start_index, len(train_df)):
if total_duration <= finetune_duration:
total_duration += float(train_df.iloc[i].duration)
else:
train = train_df[start_index:i].copy()
train.to_csv(data_path+os.sep+args.get('FINETUNE_CSV'), index=False)
print(f'{total_duration/3600}hrs finetune split done')
start_index = i
total_duration = 0
break
if validation_duration: # validation set for pseudolabel pretraining
for i in range(start_index, len(train_df)):
if total_duration <= validation_duration:
total_duration += float(train_df.iloc[i].duration)
else:
train = train_df[start_index:i].copy()
train.to_csv(data_path+os.sep+args.get('VAL_PS_CSV'), index=False)
print(f'{total_duration/3600}hrs validation split done')
start_index = i
break
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--url", help="url path of the commonvoice dataset")
args = parser.parse_args()
args = collate_args(args1=vars(args),
args2=vars(args_default)
)
starttime = time.time()
download_n_subsample(args)
create_train_finetune_split(args.get('TRAIN_DURATION', 50),
args.get('FINETUNE_DURATION', 20),
args.get('VALIDATION_DURATION'),
args,
)
print('That took {} seconds'.format(time.time() - starttime))