Skip to content

Commit e1b268f

Browse files
committed
docs(loss): multi_part loss实现
1 parent 32a0378 commit e1b268f

File tree

4 files changed

+26
-2
lines changed

4 files changed

+26
-2
lines changed

docs/定义YOLO_v1模型.md renamed to docs/YOLO模型.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11

2-
# 定义YOLO_v1模型
2+
# YOLO模型
33

44
论文给出了一个`24`层卷积的`CNN`模型
55

docs/imgs/loss.png

46.5 KB
Loading

docs/损失函数.md

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
2+
# 损失函数
3+
4+
## 定义
5+
6+
为了有效训练`YOLO`模型,论文提供了一个`Multi-Part Loss`
7+
8+
![](./imgs/loss.png)
9+
10+
* $\lambda_{coord} = 5$
11+
* $\lambda_{noobj} = 0.5$
12+
13+
对于真值边界框而言,其置信度为$1$,对应的类别概率为$\hat{p_{i}}(c) = 1$
14+
15+
## 实现
16+
17+
对于网格内不存在目标,或者不属于`IoU`最大的预测边界框而言,其损失计算仅为
18+
19+
$$
20+
loss = \lambda_{noobj}\sum_{i=0}^{S^{2}}\sum_{j=0}^{B} 1_{ij}^{noobj} (C_{i} - \hat{C_{i}})^{2}
21+
$$
22+
23+
相关实现文件:`py/lib/models/multi_part_loss.py`

mkdocs.yml

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,5 +32,6 @@ nav:
3232
- Home: index.md
3333
- 架构解析: '架构解析.md'
3434
- 数据集: '数据集.md'
35-
- 定义YOLO_v1模型: '定义YOLO_v1模型.md'
35+
- YOLO模型: 'YOLO模型.md'
36+
- 损失函数: '损失函数.md'
3637
- log: log.md

0 commit comments

Comments
 (0)