@@ -126,7 +126,8 @@ def experiment_gbdt(model_params: Dict[str, Any],
126126 with_mlflow : bool = False ,
127127 mlflow_experiment_id : Optional [Union [int , str ]] = None ,
128128 mlflow_run_name : Optional [str ] = None ,
129- mlflow_tracking_uri : Optional [str ] = None
129+ mlflow_tracking_uri : Optional [str ] = None ,
130+ with_id = True
130131 ):
131132 """
132133 Evaluate metrics by cross-validation and stores result
@@ -248,6 +249,7 @@ def experiment_gbdt(model_params: Dict[str, Any],
248249
249250 if feature_list :
250251 X = pd .concat ([X_train , X_test ]) if X_test is not None else X_train
252+ X .reset_index (drop = True , inplace = True )
251253 X = load_features (X , feature_list , directory = feature_directory , ignore_columns = ignore_columns )
252254 ntrain = len (X_train )
253255 X_train , X_test = X .iloc [:ntrain , :], X .iloc [ntrain :, :].reset_index (drop = True )
@@ -342,6 +344,9 @@ def experiment_gbdt(model_params: Dict[str, Any],
342344 if submission_filename is None :
343345 submission_filename = os .path .basename (logging_directory )
344346
347+ if not with_id :
348+ submit_df .drop (submit_df .columns [0 ], axis = 1 , inplace = True )
349+
345350 exp .log_dataframe (submission_filename , submit_df , 'csv' )
346351
347352 elapsed_time = time .time () - start_time
@@ -403,7 +408,7 @@ def autoprep_gbdt(X_train: pd.DataFrame, X_test: Optional[pd.DataFrame],
403408
404409 if gbdt_type == 'cat' and len (categorical_feature ) > 0 :
405410 X_train = X_train .copy ()
406- X_all = X_train if X_test is None else pd .concat ([X_train , X_test ])
411+ X_all = X_train if X_test is None else pd .concat ([X_train , X_test ]). copy ()
407412
408413 # https://catboost.ai/docs/concepts/faq.html#why-float-and-nan-values-are-forbidden-for-cat-features
409414 for c in categorical_feature :
0 commit comments