-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathposture_image.py
244 lines (215 loc) · 8.66 KB
/
posture_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import cv2
import math
import time
import numpy as np
import util
from config_reader import config_reader
from scipy.ndimage.filters import gaussian_filter
from model import get_testing_model
tic=0
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
[0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
[85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
def process (input_image, params, model_params):
''' Start of finding the Key points of full body using Open Pose.'''
oriImg = cv2.imread(input_image) # B,G,R order
multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(1):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_params['stride'],
model_params['padValue'])
input_img = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,0,1,2)) # required shape (1, width, height, channels)
output_blobs = model.predict(input_img)
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3],
:]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_avg = heatmap_avg + heatmap / len(multiplier)
paf_avg = paf_avg + paf / len(multiplier)
all_peaks = [] #To store all the key points which a re detected.
peak_counter = 0
prinfTick(1) #prints time required till now.
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map.shape)
map_left[1:, :] = map[:-1, :]
map_right = np.zeros(map.shape)
map_right[:-1, :] = map[1:, :]
map_up = np.zeros(map.shape)
map_up[:, 1:] = map[:, :-1]
map_down = np.zeros(map.shape)
map_down[:, :-1] = map[:, 1:]
peaks_binary = np.logical_and.reduce(
(map >= map_left, map >= map_right, map >= map_up, map >= map_down, map > params['thre1']))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
connection_all = []
special_k = []
mid_num = 10
prinfTick(2) #prints time required till now.
print()
position = checkPosition(all_peaks) #check position of spine.
checkKneeling(all_peaks) #check whether kneeling oernot
checkHandFold(all_peaks) #check whether hands are folding or not.
canvas1 = draw(input_image,all_peaks) #show the image.
return canvas1 , position
def draw(input_image, all_peaks):
canvas = cv2.imread(input_image) # B,G,R order
for i in range(18):
for j in range(len(all_peaks[i])):
cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
return canvas
def checkPosition(all_peaks):
try:
f = 0
if (all_peaks[16]):
a = all_peaks[16][0][0:2] #Right Ear
f = 1
else:
a = all_peaks[17][0][0:2] #Left Ear
b = all_peaks[11][0][0:2] # Hip
angle = calcAngle(a,b)
degrees = round(math.degrees(angle))
if (f):
degrees = 180 - degrees
if (degrees<70):
return 1
elif (degrees > 110):
return -1
else:
return 0
except Exception as e:
print("person not in lateral view and unable to detect ears or hip")
#calculate angle between two points with respect to x-axis (horizontal axis)
def calcAngle(a, b):
try:
ax, ay = a
bx, by = b
if (ax == bx):
return 1.570796
return math.atan2(by-ay, bx-ax)
except Exception as e:
print("unable to calculate angle")
def checkHandFold(all_peaks):
try:
if (all_peaks[3][0][0:2]):
try:
if (all_peaks[4][0][0:2]):
distance = calcDistance(all_peaks[3][0][0:2],all_peaks[4][0][0:2]) #distance between right arm-joint and right palm.
armdist = calcDistance(all_peaks[2][0][0:2], all_peaks[3][0][0:2]) #distance between left arm-joint and left palm.
if (distance < (armdist + 100) and distance > (armdist - 100) ): #this value 100 is arbitary. this shall be replaced with a calculation which can adjust to different sizes of people.
print("Not Folding Hands")
else:
print("Folding Hands")
except Exception as e:
print("Folding Hands")
except Exception as e:
try:
if(all_peaks[7][0][0:2]):
distance = calcDistance( all_peaks[6][0][0:2] ,all_peaks[7][0][0:2])
armdist = calcDistance(all_peaks[6][0][0:2], all_peaks[5][0][0:2])
# print(distance)
if (distance < (armdist + 100) and distance > (armdist - 100)):
print("Not Folding Hands")
else:
print("Folding Hands")
except Exception as e:
print("Unable to detect arm joints")
def calcDistance(a,b): #calculate distance between two points.
try:
x1, y1 = a
x2, y2 = b
return math.hypot(x2 - x1, y2 - y1)
except Exception as e:
print("unable to calculate distance")
def checkKneeling(all_peaks):
f = 0
if (all_peaks[16]):
f = 1
try:
if(all_peaks[10][0][0:2] and all_peaks[13][0][0:2]): # if both legs are detected
rightankle = all_peaks[10][0][0:2]
leftankle = all_peaks[13][0][0:2]
hip = all_peaks[11][0][0:2]
leftangle = calcAngle(hip,leftankle)
leftdegrees = round(math.degrees(leftangle))
rightangle = calcAngle(hip,rightankle)
rightdegrees = round(math.degrees(rightangle))
if (f == 0):
leftdegrees = 180 - leftdegrees
rightdegrees = 180 - rightdegrees
if (leftdegrees > 60 and rightdegrees > 60): # 60 degrees is trail and error value here. We can tweak this accordingly and results will vary.
print ("Both Legs are in Kneeling")
elif (rightdegrees > 60):
print ("Right leg is kneeling")
elif (leftdegrees > 60):
print ("Left leg is kneeling")
else:
print ("Not kneeling")
except IndexError as e:
try:
if (f):
a = all_peaks[10][0][0:2] # if only one leg (right leg) is detected
else:
a = all_peaks[13][0][0:2] # if only one leg (left leg) is detected
b = all_peaks[11][0][0:2] #location of hip
angle = calcAngle(b,a)
degrees = round(math.degrees(angle))
if (f == 0):
degrees = 180 - degrees
if (degrees > 60):
print ("Both Legs Kneeling")
else:
print("Not Kneeling")
except Exception as e:
print("legs not detected")
def showimage(img): #sometimes opencv will oversize the image when using using `cv2.imshow()`. This function solves that issue.
screen_res = 1280, 720 #my screen resolution.
scale_width = screen_res[0] / img.shape[1]
scale_height = screen_res[1] / img.shape[0]
scale = min(scale_width, scale_height)
window_width = int(img.shape[1] * scale)
window_height = int(img.shape[0] * scale)
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.resizeWindow('image', window_width, window_height)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def prinfTick(i): #Time calculation to keep a trackm of progress
toc = time.time()
print ('processing time%d is %.5f' % (i,toc - tic))
if __name__ == '__main__': #main function of the program
tic = time.time()
print('start processing...')
model = get_testing_model()
model.load_weights('./model/keras/model.h5')
vi=False
if(vi == False):
time.sleep(2)
params, model_params = config_reader()
canvas, position= process('./sample_images/straight_flip.jpg', params, model_params)
showimage(canvas)
if (position == 1):
print("Hunchback")
elif (position == -1):
print ("Reclined")
else:
print("Straight")