forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer.c
301 lines (272 loc) · 11 KB
/
transformer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#include "include/transformer.h"
#include <fcntl.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#define DO_PRAGMA(x) _Pragma (#x)
#ifdef _SUPPORT_OPENMP_
#define PRAGMA_OMP_PARALLEL_FOR_PRIVATE(x) DO_PRAGMA(omp parallel for private(x))
#else
#define PRAGMA_OMP_PARALLEL_FOR_PRIVATE(x)
#endif /* _SUPPORT_OPENMP_ */
// ----------------------------------------------------------------------------
// neural net blocks; the dynamics of the Transformer
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrtf(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void softmax(float* x, int size) {
// find max value (for numerical stability)
float max_val = x[0];
for (int i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = expf(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
void matmul(float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
// by far the most amount of time is spent inside this little function
int i;
PRAGMA_OMP_PARALLEL_FOR_PRIVATE(i)
for (i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
}
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
s->x = calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->att = calloc(p->n_heads * p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->key_cache || !s->value_cache || !s->att || !s->logits) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
}
void free_run_state(RunState* s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->att);
free(s->logits);
free(s->key_cache);
free(s->value_cache);
}
void memory_map_weights(TransformerWeights *w, Config* p, float* ptr, int shared_weights) {
int head_size = p->dim / p->n_heads;
// make sure the multiplications below are done in 64bit to fit the parameter counts of 13B+ models
unsigned long long n_layers = p->n_layers;
w->token_embedding_table = ptr;
ptr += p->vocab_size * p->dim;
w->rms_att_weight = ptr;
ptr += n_layers * p->dim;
w->wq = ptr;
ptr += n_layers * p->dim * (p->n_heads * head_size);
w->wk = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wv = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wo = ptr;
ptr += n_layers * (p->n_heads * head_size) * p->dim;
w->rms_ffn_weight = ptr;
ptr += n_layers * p->dim;
w->w1 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->w2 = ptr;
ptr += n_layers * p->hidden_dim * p->dim;
w->w3 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->rms_final_weight = ptr;
ptr += p->dim;
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_real (for RoPE)
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_imag (for RoPE)
w->wcls = shared_weights ? w->token_embedding_table : ptr;
}
void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights,
int* fd, float** data, ssize_t* file_size) {
FILE *file = fopen(checkpoint, "rb");
if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); exit(EXIT_FAILURE); }
// read in the config header
if (fread(config, sizeof(Config), 1, file) != 1) { exit(EXIT_FAILURE); }
// negative vocab size is hacky way of signaling unshared weights. bit yikes.
int shared_weights = config->vocab_size > 0 ? 1 : 0;
config->vocab_size = abs(config->vocab_size);
// figure out the file size
fseek(file, 0, SEEK_END); // move file pointer to end of file
*file_size = ftell(file); // get the file size, in bytes
fclose(file);
// memory map the Transformer weights into the data pointer
*fd = open(checkpoint, O_RDONLY); // open in read only mode
if (*fd == -1) { fprintf(stderr, "open failed!\n"); exit(EXIT_FAILURE); }
*data = mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0);
if (*data == MAP_FAILED) { fprintf(stderr, "mmap failed!\n"); exit(EXIT_FAILURE); }
float* weights_ptr = *data + sizeof(Config)/sizeof(float);
memory_map_weights(weights, config, weights_ptr, shared_weights);
}
float* forward(Transformer* transformer, int token, int pos) {
// a few convenience variables
Config* p = &transformer->config;
TransformerWeights* w = &transformer->weights;
RunState* s = &transformer->state;
float *x = s->x;
int dim = p->dim;
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
int kv_mul = p->n_heads / p->n_kv_heads; // integer multiplier of the kv sharing in multiquery
int hidden_dim = p->hidden_dim;
int head_size = dim / p->n_heads;
// copy the token embedding into x
float* content_row = w->token_embedding_table + token * dim;
memcpy(x, content_row, dim*sizeof(*x));
// forward all the layers
unsigned long long p_n_layer = p->n_layers;
for(unsigned long long l = 0; l < p_n_layer; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
// key and value point to the kv cache
int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience
s->k = s->key_cache + loff + pos * kv_dim;
s->v = s->value_cache + loff + pos * kv_dim;
// qkv matmuls for this position
matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim);
matmul(s->k, s->xb, w->wk + l*dim*kv_dim, dim, kv_dim);
matmul(s->v, s->xb, w->wv + l*dim*kv_dim, dim, kv_dim);
// RoPE relative positional encoding: complex-valued rotate q and k in each head
for (int i = 0; i < dim; i+=2) {
int head_dim = i % head_size;
float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size);
float val = pos * freq;
float fcr = cosf(val);
float fci = sinf(val);
int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only
for (int v = 0; v < rotn; v++) {
float* vec = v == 0 ? s->q : s->k; // the vector to rotate (query or key)
float v0 = vec[i];
float v1 = vec[i+1];
vec[i] = v0 * fcr - v1 * fci;
vec[i+1] = v0 * fci + v1 * fcr;
}
}
// multihead attention. iterate over all heads
int h;
PRAGMA_OMP_PARALLEL_FOR_PRIVATE(h)
for (h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float* q = s->q + h * head_size;
// attention scores for this head
float* att = s->att + h * p->seq_len;
// iterate over all timesteps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestep
float* k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(att, pos + 1);
// weighted sum of the values, store back into xb
float* xb = s->xb + h * head_size;
memset(xb, 0, head_size * sizeof(float));
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float* v = s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// get the attention weight for this timestep
float a = att[t];
// accumulate the weighted value into xb
for (int i = 0; i < head_size; i++) {
xb[i] += a * v[i];
}
}
}
// final matmul to get the output of the attention
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
// residual connection back into x
for (int i = 0; i < dim; i++) {
x[i] += s->xb2[i];
}
// ffn rmsnorm
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim);
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))
// first calculate self.w1(x) and self.w3(x)
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
// SwiGLU non-linearity
for (int i = 0; i < hidden_dim; i++) {
float val = s->hb[i];
// silu(x)=x*σ(x), where σ(x) is the logistic sigmoid
val *= (1.0f / (1.0f + expf(-val)));
// elementwise multiply with w3(x)
val *= s->hb2[i];
s->hb[i] = val;
}
// final matmul to get the output of the ffn
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
// residual connection
for (int i = 0; i < dim; i++) {
x[i] += s->xb[i];
}
}
// final rmsnorm
rmsnorm(x, x, w->rms_final_weight, dim);
// classifier into logits
matmul(s->logits, x, w->wcls, p->dim, p->vocab_size);
return s->logits;
}
void build_transformer(Transformer *t, char* checkpoint_path) {
// read in the Config and the Weights from the checkpoint
read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data, &t->file_size);
// allocate the RunState buffers
malloc_run_state(&t->state, &t->config);
}
void free_transformer(Transformer* t) {
// close the memory mapping
if (t->data != MAP_FAILED) { munmap(t->data, t->file_size); }
if (t->fd != -1) { close(t->fd); }
// free the RunState buffers
free_run_state(&t->state);
}