-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatastream.py
612 lines (486 loc) · 17.5 KB
/
datastream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
from __future__ import annotations
from pydantic import BaseModel, PositiveInt
from typing import (
Tuple,
Dict,
List,
Callable,
Optional,
TypeVar,
Generic,
Union,
)
import numpy as np
import torch
from pathlib import Path
from datastream import Dataset
from datastream.samplers import (
StandardSampler,
MergeSampler,
ZipSampler,
MultiSampler,
RepeatSampler,
)
T = TypeVar('T')
R = TypeVar('R')
class Datastream(BaseModel, Generic[T]):
'''
``Datastream[T]`` combines a ``Dataset[T]`` and a sampler into a stream of
examples.
By default the samples are drawn without replacement until the
full dataset is exhausted. The proportion of the dataset that should be
drawn before allowing replacement can be changed with
:func:`Datastream.sample_proportion`.
>>> data_loader = (
... Datastream(Dataset.from_subscriptable([1, 2, 3]))
... .data_loader(batch_size=16, n_batches_per_epoch=100)
... )
>>> len(next(iter(data_loader)))
16
'''
dataset: Dataset[T]
sampler: Optional[torch.utils.data.Sampler]
class Config:
arbitrary_types_allowed = True
allow_mutation = False
def __init__(
self,
dataset: Dataset[T],
sampler: torch.utils.data.Sampler = None
):
if len(dataset) == 0:
raise ValueError('Cannot create datastream from empty dataset')
super().__init__(
dataset=dataset,
sampler=(
StandardSampler(len(dataset))
if sampler is None
else sampler
)
)
def __len__(self):
return len(self.sampler)
def __iter__(self):
return map(self.dataset.__getitem__, iter(self.sampler))
@staticmethod
def merge(datastreams_and_ns: Tuple[Union[
Datastream[T],
Tuple[Datastream[T], int]
], ...]) -> Datastream[T]:
'''
Creates a merged datastream where samples are drawn one at a time from
each underlying datastream (also known as "interleave").
Optionally you can define the number of drawn samples per
``Datastream``.
>>> datastream1 = Datastream(Dataset.from_subscriptable([1, 1]))
>>> datastream2 = Datastream(Dataset.from_subscriptable([2, 2]))
>>> datastream3 = Datastream(Dataset.from_subscriptable([3, 3, 3, 3]))
>>> merged_datastream = Datastream.merge([
... (datastream1, 1),
... (datastream2, 1),
... (datastream3, 2),
... ])
>>> list(merged_datastream)
[1, 2, 3, 3, 1, 2, 3, 3]
'''
datastreams_and_ns = [
x if type(x) is tuple else (x, 1)
for x in datastreams_and_ns
]
return Datastream(
Dataset.concat([
datastream.dataset for datastream, n in datastreams_and_ns
]),
MergeSampler(*zip(*[
(datastream.sampler, datastream.dataset, n)
for (datastream, n) in datastreams_and_ns
])),
)
@staticmethod
def zip(datastreams: List[Datastream]) -> Datastream[Tuple]:
'''
Zip multiple datastreams together so that all combinations of examples
are possible (i.e. the product) creating tuples like
``(example1, example2, ...)``. The samples are drawn independently
from each underlying datastream.
'''
return Datastream(
Dataset.combine([
datastream.dataset for datastream in datastreams
]),
ZipSampler(*zip(*[
(datastream.sampler, datastream.dataset)
for datastream in datastreams
])),
)
def map(
self: Datastream[T], function: Callable[[T], R]
) -> Datastream[R]:
'''
Creates a new Datastream with a new mapped dataset. See
:func:`Dataset.map` for details.
'''
return Datastream(
self.dataset.map(function),
self.sampler,
)
def starmap(
self: Datastream[T], function: Callable[[...], R]
) -> Datastream[R]:
'''
Creates a new Datastream with a new starmapped dataset. See
:func:`Dataset.starmap` for details.
'''
return Datastream(
self.dataset.starmap(function),
self.sampler,
)
def data_loader(
self,
n_batches_per_epoch: int = None,
**kwargs
) -> torch.utils.data.DataLoader:
'''
Get ``torch.utils.data.DataLoader`` for use in pytorch pipeline.
The argument ``n_batches_per_epoch`` overrides the underlying length
of the dataset. If the epoch ends before the full dataset has been
processed then it will continue from the same point the next epoch.
>>> data_loader = (
... Datastream(Dataset.from_subscriptable([5, 5, 5]))
... .data_loader(batch_size=5, n_batches_per_epoch=10)
... )
>>> list(data_loader)[0]
tensor([5, 5, 5, 5, 5])
'''
if n_batches_per_epoch is None:
sampler = self.sampler
else:
sampler = RepeatSampler(
self.sampler,
n_batches_per_epoch * kwargs['batch_size'],
)
return torch.utils.data.DataLoader(
self.dataset, sampler=sampler, **kwargs
)
def zip_index(self: Datastream[T]) -> Datastream[Tuple[T, int]]:
'''
Zip the output with its underlying `Dataset` index. The output of the
pipeline will be a tuple ``(output, index)``
This method is useful when you want modify your sample weights during
training since that requires the index of the example.
See :func:`Dataset.zip_index` for more details.
'''
return Datastream(
self.dataset.zip_index(),
self.sampler,
)
def weight(self, index: int) -> float:
'''Get sample weight for specific example.'''
return self.sampler.weight(index)
def update_weights_(self, function: Callable[[np.array], np.array]):
'''Update all sample weights by function **in-place**.'''
self.sampler.update_weights_(function)
def update_example_weight_(self, weight: Union[List, float], index: int):
'''Update sample weight for specific example **in-place**.'''
self.sampler.update_example_weight_(weight, index)
def sample_proportion(
self: Datastream[T],
proportion: float,
) -> Datastream[T]:
'''
Create new ``Datastream[T]`` with changed proportion. This changes the
numbers of drawn samples before restarting sampling with new weights
and allowing sample replacement.
It is important to set this if you are using sample weights because the
default is to sample without replacement with proportion 1.0 which will
cause the weighting scheme to only affect the order in which the
samples are drawn.
'''
return Datastream(
self.dataset,
self.sampler.sample_proportion(proportion),
)
def take(
self: Datastream[T],
n_samples: PositiveInt,
) -> Datastream[T]:
'''
Like :func:`Datastream.sample_proportion` but specify the number of
samples instead of a proportion.
'''
if n_samples < 1:
raise ValueError('n_samples must be greater than or equal to 1')
return self.sample_proportion(n_samples / len(self))
def state_dict(self) -> Dict:
'''Get state of datastream. Useful for checkpointing sample weights.'''
return dict(sampler=self.sampler.state_dict())
def load_state_dict(self, state_dict: Dict):
'''Load saved state from :func:`Datastream.state_dict`.'''
return self.sampler.load_state_dict(state_dict['sampler'])
def multi_sample(self: Datastream[T], n: int) -> Datastream[T]:
'''
Split datastream into clones with different sample weights and then
merge them. The weights when accessed will be a sequence of multiple
weights.
This allows sample strategies where you for example stratify based on
the model's predictions as shown below.
.. highlight:: python
.. code-block:: python
datastream = (
Datastream(dataset)
.zip_index()
.multi_sample(n_classes)
.sample_proportion(0.01)
)
data_loader = datastream.data_loader(...)
for indices, batch in data_loader:
...
for index in indices:
datastream.update_weight(index, predicted_classes)
'''
return Datastream(
self.dataset,
MultiSampler.from_number(n, self.dataset),
)
def cache(
self,
key_column: str,
):
'''Cache dataset in-memory. See :func:`Dataset.cache` for details.'''
return Datastream(
self.dataset.cache(key_column),
self.sampler,
)
def test_infinite():
datastream = Datastream(Dataset.from_subscriptable(list('abc')))
it = iter(datastream.data_loader(batch_size=8, n_batches_per_epoch=10))
for _ in range(10):
batch = next(it)
def test_iter():
datastream = Datastream(Dataset.from_subscriptable(list('abc')))
assert len(list(datastream)) == 3
def test_empty():
import pytest
with pytest.raises(ValueError):
Datastream(Dataset.from_subscriptable(list()))
def test_datastream_merge():
datastream = Datastream.merge([
Datastream(Dataset.from_subscriptable(list('abc'))),
Datastream(Dataset.from_subscriptable(list('def'))),
])
it = iter(datastream.sampler)
for _ in range(2):
index = next(it)
it = iter(datastream.data_loader(batch_size=8, n_batches_per_epoch=10))
for _ in range(10):
batch = next(it)
assert (
len(list(
datastream.data_loader(batch_size=1)
)) == len(datastream)
)
def test_datastream_zip():
datasets = [
Dataset.from_subscriptable([1, 2]),
Dataset.from_subscriptable([3, 4, 5]),
Dataset.from_subscriptable([6, 7]),
]
datastreams = [
Datastream(ds, sampler=torch.utils.data.SequentialSampler(ds))
for ds in datasets
]
zipped_datastream = Datastream.zip(datastreams)
batch = next(iter(zipped_datastream.data_loader(batch_size=3)))
assert len(batch) == 3 and len(batch[0]) == 3
assert batch[0][0] == 1 and batch[0][1] == 2 and batch[0][2] == 1
assert batch[1][0] == 3 and batch[1][1] == 4 and batch[1][2] == 5
assert batch[2][0] == 6 and batch[2][1] == 7 and batch[2][2] == 6
assert (
len(list(
zipped_datastream.data_loader(batch_size=1)
)) == len(zipped_datastream)
)
def test_datastream_merge_zip_merge():
'''
Repeating because it only sometimes recreated an error that occured
when using mixup/mixmatch
'''
def RandomDatastream():
return Datastream(Dataset.from_subscriptable(
list(range(np.random.randint(1, 10)))
))
def MergedDatastream():
return Datastream.merge([RandomDatastream(), RandomDatastream()])
def ZippedMergedDatastream():
return Datastream.zip([MergedDatastream(), MergedDatastream()])
for attempt in range(10):
print('attempt:', attempt)
datastream = Datastream.merge([
(ZippedMergedDatastream(), 1),
(ZippedMergedDatastream(), 5),
])
it = iter(datastream.data_loader(
batch_size=16, n_batches_per_epoch=10
))
for _ in range(10):
print(next(it))
def test_datastream_simple_weights():
dataset = Dataset.from_subscriptable([1, 2, 3, 4])
datastream = (
Datastream(dataset)
.zip_index()
.starmap(lambda integer, index: dict(
integer=integer,
index=index,
))
.sample_proportion(0.5)
)
removed_indices = [0, 3]
for index in removed_indices:
datastream.update_example_weight_(0.0, removed_indices)
samples = list(datastream.data_loader(batch_size=1))
assert len(samples) == 2
for sample in samples:
if sample['index'] in removed_indices:
raise AssertionError(
'Samples with 0 weight were drawn from the dataset'
)
def test_merge_datastream_weights():
datasets = [
Dataset.from_subscriptable([1, 2]),
Dataset.from_subscriptable([3, 4, 5]),
Dataset.from_subscriptable([6, 7]),
]
datastream = (
Datastream.merge([
Datastream(dataset)
for dataset in datasets
])
.zip_index()
.starmap(lambda integer, index: dict(
integer=integer,
index=index,
))
.sample_proportion(0.5)
)
removed_indices = [0, 3]
for index in removed_indices:
datastream.update_example_weight_(0.0, index)
samples = list(datastream.data_loader(batch_size=4, n_batches_per_epoch=4))
datastream.update_weights_(lambda weights: weights * 0.9 + 1 * 0.1)
def test_multi_sample():
data = [1, 2, 4]
n_multi_sample = 2
datastream = (
Datastream(
Dataset.from_subscriptable(data)
)
.map(lambda number: number ** 2)
.multi_sample(n_multi_sample)
.sample_proportion(0.5)
.zip_index()
.starmap(lambda number, index: (number ** 0.5, index))
)
output = [
(number, index)
for number, index in datastream.data_loader(batch_size=1)
]
assert len(output) == len(data) * n_multi_sample
print(output)
state = datastream.state_dict()
datastream.load_state_dict(state)
for index, number in zip(output, range(2)):
datastream.update_example_weight_(index, 0)
output2 = [
(number, index)
for number, index in datastream.data_loader(batch_size=1)
]
assert len(output2) == len(data) * n_multi_sample
zero_indices = set([index for _, index in output[:2]])
for number, index in output2:
assert index not in zero_indices
def test_take():
import pytest
datastream = Datastream(Dataset.from_subscriptable(list('abc'))).take(2)
assert len(list(datastream.data_loader(batch_size=1))) == 2
with pytest.raises(ValueError):
Datastream(Dataset.from_subscriptable(list('abc'))).take(0)
datastream = Datastream.merge([
Datastream(Dataset.from_subscriptable(list('abc'))),
Datastream(Dataset.from_subscriptable(list('d'))),
])
assert len(list(datastream.take(2).data_loader(batch_size=1))) == 2
def test_sequential_sampler():
from datastream.samplers import SequentialSampler
dataset = Dataset.from_subscriptable(list('abc'))
datastream = Datastream(dataset, SequentialSampler(len(dataset))).take(2)
assert len(list(datastream.data_loader(batch_size=1))) == 2
datastream = Datastream(dataset, SequentialSampler(len(dataset)))
it = iter(datastream.data_loader(batch_size=6, n_batches_per_epoch=10))
assert next(it) == ['a', 'b', 'c', 'a', 'b', 'c']
def test_concat_merge():
dataset = Dataset.concat([
Dataset.from_subscriptable([1, 2]),
Dataset.from_subscriptable([1, 3, 5]),
])
datastream = Datastream.merge([
Datastream(dataset),
Datastream(dataset.subset(
lambda df: [index < 3 for index in range(len(df))]
)),
])
assert len(dataset.subset(
lambda df: [index < 3 for index in range(len(df))]
)) == 3
assert len(list(datastream)) == 6
def test_combine_concat_merge():
dataset = Dataset.concat([
Dataset.zip([
Dataset.from_subscriptable([1]),
Dataset.from_subscriptable([2]),
]),
Dataset.combine([
Dataset.from_subscriptable([3, 3]),
Dataset.from_subscriptable([4, 4, 4]),
]),
])
datastream = Datastream.merge([
Datastream(dataset),
Datastream(Dataset.zip([
Dataset.from_subscriptable([5]),
Dataset.from_subscriptable([6]),
])),
])
assert len(list(datastream)) == 2
def test_last_batch():
from datastream.samplers import SequentialSampler
datastream = Datastream(
Dataset.from_subscriptable(list('abc'))
)
assert list(map(len, datastream.data_loader(batch_size=4))) == [3]
assert list(map(len, datastream.data_loader(batch_size=4, n_batches_per_epoch=2))) == [4, 4]
datastream = Datastream(
Dataset.from_subscriptable(list('abc')),
SequentialSampler(3),
)
assert list(map(len, datastream.data_loader(batch_size=2))) == [2, 1]
def test_seeded_random_sampler():
dataset = Dataset.from_subscriptable(np.arange(100))
datastream = Datastream(dataset, sampler=StandardSampler(len(dataset), seed=1))
loader = datastream.data_loader(batch_size=1, collate_fn=tuple)
batches1 = [batch for batch in loader]
batches2 = [batch for batch in loader]
assert all(
batch1[0] == batch2[0]
for batch1, batch2 in zip(batches1, batches2)
)
def test_unseeded_random_sampler():
dataset = Dataset.from_subscriptable(np.arange(100))
datastream = Datastream(dataset, sampler=StandardSampler(len(dataset)))
loader = datastream.data_loader(batch_size=1, collate_fn=tuple)
batches1 = [batch for batch in loader]
batches2 = [batch for batch in loader]
assert any(
batch1[0] != batch2[0]
for batch1, batch2 in zip(batches1, batches2)
)