-
Notifications
You must be signed in to change notification settings - Fork 168
/
harmonic_patterns.py
380 lines (316 loc) · 13.8 KB
/
harmonic_patterns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
import scipy
from directional_change import directional_change, get_extremes
from dataclasses import dataclass
from typing import Union
from math import log
@dataclass
class XABCD:
XA_AB: Union[float, list, None]
AB_BC: Union[float, list, None]
BC_CD: Union[float, list, None]
XA_AD: Union[float, list, None]
name: str
# Define Patterns
GARTLEY = XABCD(0.618, [0.382, 0.886], [1.13, 1.618], 0.786, "Gartley")
BAT = XABCD([0.382, 0.50], [0.382, 0.886], [1.618, 2.618], 0.886, "Bat")
#ALT_BAT = XABCD(0.382, [0.382, 0.886], [2.0, 3.618], 1.13, "Alt Bat")
BUTTERFLY = XABCD(0.786, [0.382, 0.886], [1.618, 2.24], [1.27, 1.41], "Butterfly")
CRAB = XABCD([0.382, 0.618], [0.382, 0.886], [2.618, 3.618], 1.618, "Crab")
DEEP_CRAB = XABCD(0.886, [0.382, 0.886], [2.0, 3.618], 1.618, "Deep Crab")
CYPHER = XABCD([0.382, 0.618], [1.13, 1.41], [1.27, 2.00], 0.786, "Cypher")
SHARK = XABCD(None, [1.13, 1.618], [1.618, 2.24], [0.886, 1.13], "Shark")
ALL_PATTERNS = [GARTLEY, BAT, BUTTERFLY, CRAB, DEEP_CRAB, CYPHER, SHARK]
@dataclass
class XABCDFound:
X: int
A: int
B: int
C: int
D: int # Index of last point in pattern, the entry is on the close of D
error: float # Error found
name: str
bull: bool
def plot_pattern(ohlc: pd.DataFrame, pat: XABCDFound, pad=3):
idx = ohlc.index
data = ohlc.iloc[pat.X - pad: pat.D + 1 + pad]
plt.style.use('dark_background')
fig = plt.gcf()
ax = fig.gca()
if pat.bull:
s1 = ohlc['low'].to_numpy()
s2 = ohlc['high'].to_numpy()
else:
s2 = ohlc['low'].to_numpy()
s1 = ohlc['high'].to_numpy()
l0 = [(idx[pat.X], s1[pat.X]), (idx[pat.A], s2[pat.A])]
l1 = [(idx[pat.A], s2[pat.A]), (idx[pat.B], s1[pat.B])]
l2 = [(idx[pat.B], s1[pat.B]), (idx[pat.C], s2[pat.C])]
l3 = [(idx[pat.C], s2[pat.C]), (idx[pat.D], s1[pat.D])]
# Connecting lines
l4 = [(idx[pat.A], s2[pat.A]), (idx[pat.C], s2[pat.C])]
l5 = [(idx[pat.B], s1[pat.B]), (idx[pat.D], s1[pat.D])]
l6 = [(idx[pat.X], s1[pat.X]), (idx[pat.B], s1[pat.B])]
l7 = [(idx[pat.X], s1[pat.X]), (idx[pat.D], s1[pat.D])]
mpf.plot(
data,
alines=dict(alines=[l0, l1, l2, l3, l4, l5, l6, l7 ], colors=['w', 'w', 'w', 'w', 'b', 'b', 'b', 'b']),
type='candle', style='charles', ax=ax
)
# Text
xa_ab = abs(s2[pat.A] - s1[pat.B]) / abs(s1[pat.X] - s2[pat.A])
ab_bc = abs(s1[pat.B] - s2[pat.C]) / abs(s2[pat.A] - s1[pat.B])
bc_cd = abs(s2[pat.C] - s1[pat.D]) / abs(s1[pat.B] - s2[pat.C])
xa_ad = abs(s2[pat.A] - s1[pat.D]) / abs(s1[pat.X] - s2[pat.A])
ax.text(int((pat.X + pat.B) / 2) - pat.X + pad, (s1[pat.X] + s1[pat.B]) / 2 , str(round(xa_ab, 3)), color='orange', fontsize='x-large')
ax.text(int((pat.A + pat.C) / 2) - pat.X + pad, (s2[pat.A] + s2[pat.C]) / 2 , str(round(ab_bc, 3)), color='orange', fontsize='x-large')
ax.text(int((pat.B + pat.D) / 2) - pat.X + pad, (s1[pat.B] + s1[pat.D]) / 2 , str(round(bc_cd, 3)), color='orange', fontsize='x-large')
ax.text(int((pat.X + pat.D) / 2) - pat.X + pad, (s1[pat.X] + s1[pat.D]) / 2 , str(round(xa_ad, 3)), color='orange', fontsize='x-large')
desc_string = pat.name
desc_string += "\nError: " + str(round(pat.error , 5))
if pat.bull:
plt_price = data['high'].max() - 0.05 * (data['high'].max() - data['low'].min())
else:
plt_price = data['low'].min() + 0.05 * (data['high'].max() - data['low'].min())
ax.text(0, plt_price , desc_string, color='yellow', fontsize='x-large')
plt.show()
def get_error(actual_ratio: float, pattern_ratio: Union[float, list, None]):
if pattern_ratio is None: # No requirement (Shark)
return 0.0
log_actual = log(actual_ratio)
if isinstance(pattern_ratio, list): # Acceptable range
log_pat0 = log(pattern_ratio[0])
log_pat1 = log(pattern_ratio[1])
assert(log_pat1 > log_pat0)
if log_pat0 <= log_actual <= log_pat1:
return 0.0
#else:
# return 1e20
err = min( abs(log_actual - log_pat0), abs(log_actual - log_pat1) )
range_mult = 2.0 # Since range is already more lenient, punish harder.
err *= range_mult
return err
elif isinstance(pattern_ratio, float):
err = abs(log_actual - log(pattern_ratio))
return err
else:
raise TypeError("Invalid pattern ratio type")
def find_xabcd(ohlc: pd.DataFrame, extremes: pd.DataFrame, err_thresh: float = 0.2):
extremes['seg_height'] = (extremes['ext_p'] - extremes['ext_p'].shift(1)).abs()
extremes['retrace_ratio'] = extremes['seg_height'] / extremes['seg_height'].shift(1)
output = {}
for pat in ALL_PATTERNS:
pat_data = {}
pat_data['bull_signal'] = np.zeros(len(ohlc))
pat_data['bull_patterns'] = []
pat_data['bear_signal'] = np.zeros(len(ohlc))
pat_data['bear_patterns'] = []
output[pat.name] = pat_data
first_conf = extremes.index[0]
extreme_i = 0
entry_taken = 0
pattern_used = None
for i in range(first_conf, len(ohlc)):
if extremes.index[extreme_i + 1] == i:
entry_taken = 0
extreme_i += 1
if entry_taken != 0:
if entry_taken == 1:
output[pattern_used]['bull_signal'][i] = 1
else:
output[pattern_used]['bear_signal'][i] = -1
continue
if extreme_i + 1 >= len(extremes):
break
if extreme_i < 3:
continue
ext_type = extremes.iloc[extreme_i]['type']
last_conf_i = extremes.index[extreme_i]
if extremes.iloc[extreme_i]['type'] > 0.0:
# Last extreme was a top, meaning we're on a leg down currently.
# We are checking for bull patterns
D_price = ohlc.iloc[i]['low']
# Check that the current low is the lowest since last confirmed top
if ohlc.iloc[last_conf_i:i]['low'].min() < D_price:
continue
else:
# Last extreme was a bottom, meaning we're on a leg up currently.
# We are checking for bear patterns
D_price = ohlc.iloc[i]['high']
# Check that the current high is the highest since last confirmed bottom
if ohlc.iloc[last_conf_i:i]['high'].max() > D_price:
continue
# D_Price set, get ratios
dc_retrace = abs(D_price - extremes.iloc[extreme_i]['ext_p']) / extremes.iloc[extreme_i]['seg_height']
xa_ad_retrace = abs(D_price - extremes.iloc[extreme_i - 2]['ext_p']) / extremes.iloc[extreme_i - 2]['seg_height']
best_err = 1e30
best_pat = None
for pat in ALL_PATTERNS:
err = 0.0
err += get_error(extremes.iloc[extreme_i]['retrace_ratio'], pat.AB_BC)
err += get_error(extremes.iloc[extreme_i - 1]['retrace_ratio'], pat.XA_AB)
err += get_error(dc_retrace, pat.BC_CD)
err += get_error(xa_ad_retrace, pat.XA_AD)
if err < best_err:
best_err = err
best_pat = pat.name
if best_err <= err_thresh:
pattern_data = XABCDFound(
int(extremes.iloc[extreme_i - 3]['ext_i']),
int(extremes.iloc[extreme_i - 2]['ext_i']),
int(extremes.iloc[extreme_i - 1]['ext_i']),
int(extremes.iloc[extreme_i]['ext_i']),
i,
best_err, best_pat, True
)
pattern_used = best_pat
if ext_type > 0.0:
entry_taken = 1
pattern_data.name = "Bull" + pattern_data.name
pattern_data.bull = True
output[pattern_used]['bull_signal'][i] = 1
output[pattern_used]['bull_patterns'].append(pattern_data)
else:
entry_taken = -1
pattern_data.name = "Bear" + pattern_data.name
pattern_data.bull = False
output[pattern_used]['bear_signal'][i] = -1
output[pattern_used]['bear_patterns'].append(pattern_data)
return output
if __name__ == '__main__':
data = pd.read_csv('BTCUSDT3600.csv')
data['date'] = data['date'].astype('datetime64[s]')
data = data.set_index('date')
#data = data[data.index < '2019-01-01']
# This takes a while to run fyi
data['r'] = np.log(data['close']).diff().shift(-1)
all_combined = np.zeros(len(data))
sigmas = [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04]
for sigma in sigmas:
extremes = get_extremes(data, sigma)
output = find_xabcd(data, extremes, 0.5)
sig = np.zeros(len(data))
for pat in ALL_PATTERNS:
sig += output[pat.name]['bear_signal'] + output[pat.name]['bull_signal']
all_combined += sig
print("done", sigma)
all_combined /= len(sigmas)
data['combined_signal'] = all_combined
data['combined_returns'] = data['r'] * data['combined_signal']
win_returns = data[data['combined_returns'] > 0]['combined_returns'].sum()
lose_returns = data[data['combined_returns'] < 0]['combined_returns'].abs().sum()
combined_pf = win_returns / lose_returns
print("Combined PF", combined_pf)
'''
# Test single set of parameters
extremes = get_extremes(data, 0.02)
output = find_xabcd(data, extremes, 0.2)
sig = np.zeros(len(data))
for pat in ALL_PATTERNS:
sig += output[pat.name]['bear_signal'] + output[pat.name]['bull_signal']
data['r'] = np.log(data['close']).diff().shift(-1)
data['signal_return'] = data['r'] * sig # Returns of all patterns combined
plt.style.use('dark_background')
data['signal_return'].cumsum().plot()
'''
'''
# Test several sigma vvalues
data['r'] = np.log(data['close']).diff().shift(-1)
plt.style.use('dark_background')
for sigma in [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04]:
extremes = get_extremes(data, sigma)
output = find_xabcd(data, extremes, 0.2)
sig = np.zeros(len(data))
for pat in ALL_PATTERNS:
sig += output[pat.name]['bear_signal'] + output[pat.name]['bull_signal']
data['signal_return'] = data['r'] * sig # Returns of all patterns combined
data['signal_return'].cumsum().plot(label=str(sigma))
pf = data[data['signal_return'] > 0]['signal_return'].sum() / data[data['signal_return'] < 0]['signal_return'].abs().sum()
print(sigma, "Profit Factor: ", pf)
plt.legend(prop={'size': 16})
plt.show()
'''
'''
# Render error graph
all_pfs = []
all_thresholds = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.65, 0.7, 0.75]
#all_thresholds = [0.1, 0.15]
for threshold in all_thresholds:
all_combined = np.zeros(len(data))
sigmas = [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04]
for sigma in sigmas:
extremes = get_extremes(data, sigma)
output = find_xabcd(data, extremes, threshold)
sig = np.zeros(len(data))
for pat in ALL_PATTERNS:
sig += output[pat.name]['bear_signal'] + output[pat.name]['bull_signal']
all_combined += sig
all_combined /= len(sigmas)
data['combined_signal'] = all_combined
data['combined_returns'] = data['r'] * data['combined_signal']
win_returns = data[data['combined_returns'] > 0]['combined_returns'].sum()
lose_returns = data[data['combined_returns'] < 0]['combined_returns'].abs().sum()
combined_pf = win_returns / lose_returns
all_pfs.append(combined_pf)
plt.style.use('dark_background')
err_thresh_pfs = pd.Series(all_pfs, index=all_thresholds)
err_thresh_pfs.plot()
plt.axhline(1.0, color='white')
plt.show()
'''
'''
# Find best err pattern
best_pat = None
best_err = 1000
for pat in output['Gartley']['bull_patterns']:
if pat.error < best_err:
best_err = pat.error
best_pat = pat
'''
'''
#Bar Charts by pattern PF and count
sigmas = []
patterns = []
pfs = []
counts = []
#for sigma in [0.01, 0.02, 0.03, 0.04]:
for sigma in [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04]:
extremes = get_extremes(data, sigma)
output = find_xabcd(data, extremes, 0.2)
for pat in ALL_PATTERNS:
sig = output[pat.name]['bear_signal'] + output[pat.name]['bull_signal']
count = len(output[pat.name]['bear_patterns']) + len(output[pat.name]['bull_patterns'])
rets = (data['r'] * sig)
pf = rets[rets > 0].sum() / rets[rets < 0].abs().sum()
if np.isnan(pf): # Set nan value to a neutral 1.0 for profit factor
pf = 1.0
if pf > 4.0: # put a ceil at 4, as that high of PF is from low sample size. Makes graph look better
pf = 4.0
sigmas.append(sigma)
patterns.append(pat.name)
pfs.append(pf)
counts.append(count)
import seaborn as sns
df = pd.DataFrame()
df['sigmas'] = sigmas
df['Patterns'] = patterns
df['Profit Factor'] = pfs
df['Count'] = counts
plt.style.use('dark_background')
sns.catplot(
data=df, y="Patterns", x='Profit Factor', hue="sigmas", kind='bar',
palette="dark", edgecolor=".6", legend=False
)
plt.axvline(1.0, color='white')
plt.legend(prop={'size': 16}, title='Sigma Values')
plt.show()
sns.catplot(
data=df, y="Patterns", x='Count', hue="sigmas", kind='bar',
palette="dark", edgecolor=".6", legend=False
)
plt.legend(prop={'size': 16}, title='Sigma Values')
plt.show()
'''