Skip to content

PDE Loss makes the result worse #26

Open
@JiahaoHuang99

Description

@JiahaoHuang99

Thanks for your great job!

Recently I am trying to reimplement the PINO on Darcy Flow.

I found that if I set f_loss=0, the result is getting better and converge faster.

The configuration (part) is follow:

data:
  name: 'Darcy'
  path: './Darcy_421/piececonst_r421_N1024_smooth1.mat'
  total_num: 1024
  offset: 0
  n_sample: 1000
  nx: 421
  sub: 7
  pde_sub: 2

model:
  layers: [64, 64, 64, 64, 64]
  modes1: [20, 20, 20, 20]
  modes2: [20, 20, 20, 20]
  fc_dim: 128
  act: gelu
  pad_ratio: [0., 0.]

train:
  batchsize: 20
  num_iter: 30_001
  milestones: [5_000, 7_500, 10_000]
  base_lr: 0.001
  scheduler_gamma: 0.5
  f_loss: 1.0
  xy_loss: 5.0
  save_step: 500000
  eval_step: 1_000

test:
  path: './Darcy_421/piececonst_r421_N1024_smooth2.mat'
  total_num: 1024
  offset: 0
  n_sample: 500
  nx: 421
  sub: 2
  batchsize: 1
  
log:
  logdir: PINO-DarcyFlow-Caltech-debug
  entity: x
  project: PINO-DF-Caltech
  wandb_mode: online

image

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions