-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain_operator.py
135 lines (120 loc) · 5.93 KB
/
train_operator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import yaml
from argparse import ArgumentParser
import math
import torch
from torch.utils.data import DataLoader
from solver.random_fields import GaussianRF
from train_utils import Adam
from train_utils.datasets import NSLoader, online_loader, DarcyFlow, DarcyCombo
from train_utils.train_3d import mixed_train
from train_utils.train_2d import train_2d_operator
from models import FNO3d, FNO2d
def train_3d(args, config):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
data_config = config['data']
# prepare dataloader for training with data
if 'datapath2' in data_config:
loader = NSLoader(datapath1=data_config['datapath'], datapath2=data_config['datapath2'],
nx=data_config['nx'], nt=data_config['nt'],
sub=data_config['sub'], sub_t=data_config['sub_t'],
N=data_config['total_num'],
t_interval=data_config['time_interval'])
else:
loader = NSLoader(datapath1=data_config['datapath'],
nx=data_config['nx'], nt=data_config['nt'],
sub=data_config['sub'], sub_t=data_config['sub_t'],
N=data_config['total_num'],
t_interval=data_config['time_interval'])
train_loader = loader.make_loader(data_config['n_sample'],
batch_size=config['train']['batchsize'],
start=data_config['offset'],
train=data_config['shuffle'])
# prepare dataloader for training with only equations
gr_sampler = GaussianRF(2, data_config['S2'], 2 * math.pi, alpha=2.5, tau=7, device=device)
a_loader = online_loader(gr_sampler,
S=data_config['S2'],
T=data_config['T2'],
time_scale=data_config['time_interval'],
batchsize=config['train']['batchsize'])
# create model
print(device)
model = FNO3d(modes1=config['model']['modes1'],
modes2=config['model']['modes2'],
modes3=config['model']['modes3'],
fc_dim=config['model']['fc_dim'],
layers=config['model']['layers'],
act=config['model']['act']).to(device)
# Load from checkpoint
if 'ckpt' in config['train']:
ckpt_path = config['train']['ckpt']
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['model'])
print('Weights loaded from %s' % ckpt_path)
# create optimizer and learning rate scheduler
optimizer = Adam(model.parameters(), betas=(0.9, 0.999),
lr=config['train']['base_lr'])
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=config['train']['milestones'],
gamma=config['train']['scheduler_gamma'])
mixed_train(model,
train_loader,
loader.S, loader.T,
a_loader,
data_config['S2'], data_config['T2'],
optimizer,
scheduler,
config,
device,
log=args.log,
project=config['log']['project'],
group=config['log']['group'])
def train_2d(args, config):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
data_config = config['data']
# dataset = DarcyFlow(data_config['datapath'],
# nx=data_config['nx'], sub=data_config['sub'],
# offset=data_config['offset'], num=data_config['n_sample'])
dataset = DarcyCombo(datapath=data_config['datapath'],
nx=data_config['nx'],
sub=data_config['sub'],
pde_sub=data_config['pde_sub'],
num=data_config['n_samples'],
offset=data_config['offset'])
train_loader = DataLoader(dataset, batch_size=config['train']['batchsize'], shuffle=True)
model = FNO2d(modes1=config['model']['modes1'],
modes2=config['model']['modes2'],
fc_dim=config['model']['fc_dim'],
layers=config['model']['layers'],
act=config['model']['act'],
pad_ratio=config['model']['pad_ratio']).to(device)
# Load from checkpoint
if 'ckpt' in config['train']:
ckpt_path = config['train']['ckpt']
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['model'])
print('Weights loaded from %s' % ckpt_path)
optimizer = Adam(model.parameters(), betas=(0.9, 0.999),
lr=config['train']['base_lr'])
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=config['train']['milestones'],
gamma=config['train']['scheduler_gamma'])
train_2d_operator(model,
train_loader,
optimizer, scheduler,
config, rank=0, log=args.log,
project=config['log']['project'],
group=config['log']['group'])
if __name__ == '__main__':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# parse options
parser = ArgumentParser(description='Basic paser')
parser.add_argument('--config_path', type=str, help='Path to the configuration file')
parser.add_argument('--log', action='store_true', help='Turn on the wandb')
args = parser.parse_args()
config_file = args.config_path
with open(config_file, 'r') as stream:
config = yaml.load(stream, yaml.FullLoader)
if 'name' in config['data'] and config['data']['name'] == 'Darcy':
train_2d(args, config)
else:
train_3d(args, config)