|
| 1 | +## 1. Brute Force |
| 2 | + |
| 3 | +::tabs-start |
| 4 | + |
| 5 | +```python |
| 6 | +class Solution: |
| 7 | + def numDistinctIslands(self, grid: List[List[int]]) -> int: |
| 8 | + |
| 9 | + def current_island_is_unique(): |
| 10 | + for other_island in unique_islands: |
| 11 | + if len(other_island) != len(current_island): |
| 12 | + continue |
| 13 | + for cell_1, cell_2 in zip(current_island, other_island): |
| 14 | + if cell_1 != cell_2: |
| 15 | + break |
| 16 | + else: |
| 17 | + return False |
| 18 | + return True |
| 19 | + |
| 20 | + # Do a DFS to find all cells in the current island. |
| 21 | + def dfs(row, col): |
| 22 | + if row < 0 or col < 0 or row >= len(grid) or col >= len(grid[0]): |
| 23 | + return |
| 24 | + if (row, col) in seen or not grid[row][col]: |
| 25 | + return |
| 26 | + seen.add((row, col)) |
| 27 | + current_island.append((row - row_origin, col - col_origin)) |
| 28 | + dfs(row + 1, col) |
| 29 | + dfs(row - 1, col) |
| 30 | + dfs(row, col + 1) |
| 31 | + dfs(row, col - 1) |
| 32 | + |
| 33 | + # Repeatedly start DFS's as long as there are islands remaining. |
| 34 | + seen = set() |
| 35 | + unique_islands = [] |
| 36 | + for row in range(len(grid)): |
| 37 | + for col in range(len(grid[0])): |
| 38 | + current_island = [] |
| 39 | + row_origin = row |
| 40 | + col_origin = col |
| 41 | + dfs(row, col) |
| 42 | + if not current_island or not current_island_is_unique(): |
| 43 | + continue |
| 44 | + unique_islands.append(current_island) |
| 45 | + print(unique_islands) |
| 46 | + return len(unique_islands) |
| 47 | +``` |
| 48 | + |
| 49 | +```java |
| 50 | +class Solution { |
| 51 | + |
| 52 | + private List<List<int[]>> uniqueIslands = new ArrayList<>(); // All known unique islands. |
| 53 | + private List<int[]> currentIsland = new ArrayList<>(); // Current Island |
| 54 | + private int[][] grid; // Input grid |
| 55 | + private boolean[][] seen; // Cells that have been explored. |
| 56 | + |
| 57 | + public int numDistinctIslands(int[][] grid) { |
| 58 | + this.grid = grid; |
| 59 | + this.seen = new boolean[grid.length][grid[0].length]; |
| 60 | + for (int row = 0; row < grid.length; row++) { |
| 61 | + for (int col = 0; col < grid[0].length; col++) { |
| 62 | + dfs(row, col); |
| 63 | + if (currentIsland.isEmpty()) { |
| 64 | + continue; |
| 65 | + } |
| 66 | + // Translate the island we just found to the top left. |
| 67 | + int minCol = grid[0].length - 1; |
| 68 | + for (int i = 0; i < currentIsland.size(); i++) { |
| 69 | + minCol = Math.min(minCol, currentIsland.get(i)[1]); |
| 70 | + } |
| 71 | + for (int[] cell : currentIsland) { |
| 72 | + cell[0] -= row; |
| 73 | + cell[1] -= minCol; |
| 74 | + } |
| 75 | + // If this island is unique, add it to the list. |
| 76 | + if (currentIslandUnique()) { |
| 77 | + uniqueIslands.add(currentIsland); |
| 78 | + } |
| 79 | + currentIsland = new ArrayList<>(); |
| 80 | + } |
| 81 | + } |
| 82 | + return uniqueIslands.size(); |
| 83 | + } |
| 84 | + |
| 85 | + private void dfs(int row, int col) { |
| 86 | + if (row < 0 || col < 0 || row >= grid.length || col >= grid[0].length) return; |
| 87 | + if (seen[row][col] || grid[row][col] == 0) return; |
| 88 | + seen[row][col] = true; |
| 89 | + currentIsland.add(new int[]{row, col}); |
| 90 | + dfs(row + 1, col); |
| 91 | + dfs(row - 1, col); |
| 92 | + dfs(row, col + 1); |
| 93 | + dfs(row, col - 1); |
| 94 | + } |
| 95 | + |
| 96 | + private boolean currentIslandUnique() { |
| 97 | + for (List<int[]> otherIsland : uniqueIslands) { |
| 98 | + if (currentIsland.size() != otherIsland.size()) { |
| 99 | + continue; |
| 100 | + } |
| 101 | + if (equalIslands(currentIsland, otherIsland)) { |
| 102 | + return false; |
| 103 | + } |
| 104 | + } |
| 105 | + return true; |
| 106 | + } |
| 107 | + |
| 108 | + private boolean equalIslands(List<int[]> island1, List<int[]> island2) { |
| 109 | + for (int i = 0; i < island1.size(); i++) { |
| 110 | + if (island1.get(i)[0] != island2.get(i)[0] || island1.get(i)[1] != island2.get(i)[1]) { |
| 111 | + return false; |
| 112 | + } |
| 113 | + } |
| 114 | + return true; |
| 115 | + } |
| 116 | +} |
| 117 | +``` |
| 118 | + |
| 119 | +::tabs-end |
| 120 | + |
| 121 | +### Time & Space Complexity |
| 122 | + |
| 123 | +- Time complexity: $O(M^2 \cdot N^2)$ |
| 124 | +- Space complexity: $O(N \cdot M)$ |
| 125 | + |
| 126 | +> Where $M$ is the number of rows, and $N$ is the number of columns |
| 127 | +
|
| 128 | +--- |
| 129 | + |
| 130 | +## 2. Hash By Local Coordinates |
| 131 | + |
| 132 | +::tabs-start |
| 133 | + |
| 134 | +```python |
| 135 | +class Solution: |
| 136 | + def numDistinctIslands(self, grid: List[List[int]]) -> int: |
| 137 | + # Do a DFS to find all cells in the current island. |
| 138 | + def dfs(row, col): |
| 139 | + if row < 0 or col < 0 or row >= len(grid) or col >= len(grid[0]): |
| 140 | + return |
| 141 | + if (row, col) in seen or not grid[row][col]: |
| 142 | + return |
| 143 | + seen.add((row, col)) |
| 144 | + current_island.add((row - row_origin, col - col_origin)) |
| 145 | + dfs(row + 1, col) |
| 146 | + dfs(row - 1, col) |
| 147 | + dfs(row, col + 1) |
| 148 | + dfs(row, col - 1) |
| 149 | + |
| 150 | + # Repeatedly start DFS's as long as there are islands remaining. |
| 151 | + seen = set() |
| 152 | + unique_islands = set() |
| 153 | + for row in range(len(grid)): |
| 154 | + for col in range(len(grid[0])): |
| 155 | + current_island = set() |
| 156 | + row_origin = row |
| 157 | + col_origin = col |
| 158 | + dfs(row, col) |
| 159 | + if current_island: |
| 160 | + unique_islands.add(frozenset(current_island)) |
| 161 | + |
| 162 | + return len(unique_islands) |
| 163 | +``` |
| 164 | + |
| 165 | +```java |
| 166 | +class Solution { |
| 167 | + |
| 168 | + private int[][] grid; |
| 169 | + private boolean[][] seen; |
| 170 | + private Set<Pair<Integer, Integer>> currentIsland; |
| 171 | + private int currRowOrigin; |
| 172 | + private int currColOrigin; |
| 173 | + |
| 174 | + private void dfs(int row, int col) { |
| 175 | + if (row < 0 || row >= grid.length || col < 0 || col >= grid[0].length) { |
| 176 | + return; |
| 177 | + } |
| 178 | + if (grid[row][col] == 0 || seen[row][col]) { |
| 179 | + return; |
| 180 | + } |
| 181 | + seen[row][col] = true; |
| 182 | + currentIsland.add(new Pair<>(row - currRowOrigin, col - currColOrigin)); |
| 183 | + dfs(row + 1, col); |
| 184 | + dfs(row - 1, col); |
| 185 | + dfs(row, col + 1); |
| 186 | + dfs(row, col - 1); |
| 187 | + } |
| 188 | + |
| 189 | + public int numDistinctIslands(int[][] grid) { |
| 190 | + this.grid = grid; |
| 191 | + this.seen = new boolean[grid.length][grid[0].length]; |
| 192 | + Set<Set<Pair<Integer, Integer>>> islands = new HashSet<>(); |
| 193 | + for (int row = 0; row < grid.length; row++) { |
| 194 | + for (int col = 0; col < grid[0].length; col++) { |
| 195 | + this.currentIsland = new HashSet<>(); |
| 196 | + this.currRowOrigin = row; |
| 197 | + this.currColOrigin = col; |
| 198 | + dfs(row, col); |
| 199 | + if (!currentIsland.isEmpty()) { |
| 200 | + islands.add(currentIsland); |
| 201 | + } |
| 202 | + } |
| 203 | + } |
| 204 | + return islands.size(); |
| 205 | + } |
| 206 | +} |
| 207 | +``` |
| 208 | + |
| 209 | +::tabs-end |
| 210 | + |
| 211 | +### Time & Space Complexity |
| 212 | + |
| 213 | +- Time complexity: $O(M \cdot N)$ |
| 214 | +- Space complexity: $O(M \cdot N)$ |
| 215 | + |
| 216 | +> Where $M$ is the number of rows, and $N$ is the number of columns |
| 217 | +
|
| 218 | +--- |
| 219 | + |
| 220 | +## 3. Hash By Path Signature |
| 221 | + |
| 222 | +::tabs-start |
| 223 | + |
| 224 | +```python |
| 225 | +class Solution: |
| 226 | + def numDistinctIslands(self, grid: List[List[int]]) -> int: |
| 227 | + # Do a DFS to find all cells in the current island. |
| 228 | + def dfs(row, col, direction): |
| 229 | + if row < 0 or col < 0 or row >= len(grid) or col >= len(grid[0]): |
| 230 | + return |
| 231 | + if (row, col) in seen or not grid[row][col]: |
| 232 | + return |
| 233 | + seen.add((row, col)) |
| 234 | + path_signature.append(direction) |
| 235 | + dfs(row + 1, col, "D") |
| 236 | + dfs(row - 1, col, "U") |
| 237 | + dfs(row, col + 1, "R") |
| 238 | + dfs(row, col - 1, "L") |
| 239 | + path_signature.append("0") |
| 240 | + |
| 241 | + # Repeatedly start DFS's as long as there are islands remaining. |
| 242 | + seen = set() |
| 243 | + unique_islands = set() |
| 244 | + for row in range(len(grid)): |
| 245 | + for col in range(len(grid[0])): |
| 246 | + path_signature = [] |
| 247 | + dfs(row, col, "0") |
| 248 | + if path_signature: |
| 249 | + unique_islands.add(tuple(path_signature)) |
| 250 | + |
| 251 | + return len(unique_islands) |
| 252 | +``` |
| 253 | + |
| 254 | +```java |
| 255 | +class Solution { |
| 256 | + |
| 257 | + private int[][] grid; |
| 258 | + private boolean[][] visited; |
| 259 | + private StringBuffer currentIsland; |
| 260 | + |
| 261 | + public int numDistinctIslands(int[][] grid) { |
| 262 | + this.grid = grid; |
| 263 | + this.visited = new boolean[grid.length][grid[0].length]; |
| 264 | + Set<String> islands = new HashSet<>(); |
| 265 | + for (int row = 0; row < grid.length; row++) { |
| 266 | + for (int col = 0; col < grid[0].length; col++) { |
| 267 | + currentIsland = new StringBuffer(); |
| 268 | + dfs(row, col, '0'); |
| 269 | + if (currentIsland.length() == 0) { |
| 270 | + continue; |
| 271 | + } |
| 272 | + islands.add(currentIsland.toString()); |
| 273 | + } |
| 274 | + } |
| 275 | + return islands.size(); |
| 276 | + } |
| 277 | + |
| 278 | + private void dfs(int row, int col, char dir) { |
| 279 | + if (row < 0 || col < 0 || row >= grid.length || col >= grid[0].length) { |
| 280 | + return; |
| 281 | + } |
| 282 | + if (visited[row][col] || grid[row][col] == 0) { |
| 283 | + return; |
| 284 | + } |
| 285 | + visited[row][col] = true; |
| 286 | + currentIsland.append(dir); |
| 287 | + dfs(row + 1, col, 'D'); |
| 288 | + dfs(row - 1, col, 'U'); |
| 289 | + dfs(row, col + 1, 'R'); |
| 290 | + dfs(row, col - 1, 'L'); |
| 291 | + currentIsland.append('0'); |
| 292 | + } |
| 293 | +} |
| 294 | +``` |
| 295 | + |
| 296 | +```cpp |
| 297 | +class Solution { |
| 298 | +private: |
| 299 | + vector<vector<int>>* grid; |
| 300 | + vector<vector<bool>> visited; |
| 301 | + string currentIsland; |
| 302 | + |
| 303 | + void dfs(int row, int col, char dir) { |
| 304 | + if (row < 0 || col < 0 || row >= grid->size() || col >= (*grid)[0].size()) { |
| 305 | + return; |
| 306 | + } |
| 307 | + if (visited[row][col] || (*grid)[row][col] == 0) { |
| 308 | + return; |
| 309 | + } |
| 310 | + visited[row][col] = true; |
| 311 | + currentIsland += dir; |
| 312 | + dfs(row + 1, col, 'D'); |
| 313 | + dfs(row - 1, col, 'U'); |
| 314 | + dfs(row, col + 1, 'R'); |
| 315 | + dfs(row, col - 1, 'L'); |
| 316 | + currentIsland += '0'; |
| 317 | + } |
| 318 | + |
| 319 | +public: |
| 320 | + int numDistinctIslands(vector<vector<int>>& grid) { |
| 321 | + this->grid = &grid; |
| 322 | + visited = vector<vector<bool>>(grid.size(), vector<bool>(grid[0].size(), false)); |
| 323 | + unordered_set<string> islands; |
| 324 | + |
| 325 | + for (int row = 0; row < grid.size(); row++) { |
| 326 | + for (int col = 0; col < grid[0].size(); col++) { |
| 327 | + currentIsland = ""; |
| 328 | + dfs(row, col, '0'); |
| 329 | + if (currentIsland.empty()) { |
| 330 | + continue; |
| 331 | + } |
| 332 | + islands.insert(currentIsland); |
| 333 | + } |
| 334 | + } |
| 335 | + return islands.size(); |
| 336 | + } |
| 337 | +}; |
| 338 | +``` |
| 339 | +
|
| 340 | +```javascript |
| 341 | +class Solution { |
| 342 | + /** |
| 343 | + * @param {number[][]} grid |
| 344 | + * @return {number} |
| 345 | + */ |
| 346 | + numDistinctIslands(grid) { |
| 347 | + this.grid = grid; |
| 348 | + this.visited = Array.from({ length: grid.length }, () => |
| 349 | + Array(grid[0].length).fill(false) |
| 350 | + ); |
| 351 | + const islands = new Set(); |
| 352 | + |
| 353 | + for (let row = 0; row < grid.length; row++) { |
| 354 | + for (let col = 0; col < grid[0].length; col++) { |
| 355 | + this.currentIsland = []; |
| 356 | + this.dfs(row, col, '0'); |
| 357 | + if (this.currentIsland.length === 0) { |
| 358 | + continue; |
| 359 | + } |
| 360 | + islands.add(this.currentIsland.join('')); |
| 361 | + } |
| 362 | + } |
| 363 | + return islands.size; |
| 364 | + } |
| 365 | + |
| 366 | + dfs(row, col, dir) { |
| 367 | + if (row < 0 || col < 0 || row >= this.grid.length || col >= this.grid[0].length) { |
| 368 | + return; |
| 369 | + } |
| 370 | + if (this.visited[row][col] || this.grid[row][col] === 0) { |
| 371 | + return; |
| 372 | + } |
| 373 | + this.visited[row][col] = true; |
| 374 | + this.currentIsland.push(dir); |
| 375 | + this.dfs(row + 1, col, 'D'); |
| 376 | + this.dfs(row - 1, col, 'U'); |
| 377 | + this.dfs(row, col + 1, 'R'); |
| 378 | + this.dfs(row, col - 1, 'L'); |
| 379 | + this.currentIsland.push('0'); |
| 380 | + } |
| 381 | +} |
| 382 | +``` |
| 383 | + |
| 384 | +::tabs-end |
| 385 | + |
| 386 | +### Time & Space Complexity |
| 387 | + |
| 388 | +- Time complexity: $O(M \cdot N)$ |
| 389 | +- Space complexity: $O(M \cdot N)$ |
| 390 | + |
| 391 | +> Where $M$ is the number of rows, and $N$ is the number of columns |
0 commit comments