-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_100.py
executable file
·241 lines (184 loc) · 9.92 KB
/
train_100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# python imports
import os
import glob
import sys
import random
import nibabel as nib
# third-party imports
import tensorflow as tf
import numpy as np
import scipy.io as sio
from losses_tf import *
from InverseNet_tf import *
from InverseNet_tfv3 import *
# from datagenerators import example_gen
from measurment import *
from utility import *
import BatchDataReader
from itertools import permutations
from ConfigReader import *
#from AdversarialNet import *
from partition import *
import pdb
def train(config_file):
config = Configuration()
config.CreateConfig(config_file)
config.PrintConfiguration()
vol_size = (config.patch_size[0], config.patch_size[1], config.patch_size[2])
batch_size = 4
training_data = os.listdir(config.base_directory + "/train/")
random.shuffle(training_data)
#train_dataset_reader = BatchDataReader.BatchDataset(training_data,batch_size,config)
model_dir = config.base_directory + config.Model_name
if not os.path.isdir(model_dir):
os.mkdir(model_dir)
gpu = '/gpu:' + str(config.GPU)
os.environ["CUDA_VISIBLE_DEVICES"] = str(config.GPU)
configurnet = tf.ConfigProto()
configurnet.gpu_options.allow_growth = True
configurnet.gpu_options.per_process_gpu_memory_fraction = 0.9
configurnet.allow_soft_placement = True
with tf.device(gpu):
src = tf.placeholder(tf.float32, shape=(None, vol_size[0], vol_size[1], vol_size[2], 1),
name="source")
tgt = tf.placeholder(tf.float32, shape=(None, vol_size[0], vol_size[1], vol_size[2], 1),
name="target")
diff = tf.placeholder(tf.float32, shape=(None, vol_size[0], vol_size[1], vol_size[2], 6),
name="target")
if config.ModelType == 'Dense':
G_net = InverseNetDense_tf(src, tgt, vol_size, batch_size, False)
else:
G_net = InverseNet_tf(src, tgt, vol_size, batch_size, False)
fake_tgt, fake_src, src_cyc, tgt_cyc, Flow = G_net.Build()
Dis_input_src = tf.placeholder(tf.float32, shape=(None, vol_size[0], vol_size[1], vol_size[2], 1),
name="DiscriminatorInput_src")
Dis_input_tgt = tf.placeholder(tf.float32, shape=(None, vol_size[0], vol_size[1], vol_size[2], 1),
name="DiscriminatorInput_tgt")
Dis_real_tgt = discriminator(Dis_input_tgt, fake_tgt, "target", False)
Dis_real_src = discriminator(Dis_input_src, fake_src, "source", False)
Dis_fake_tgt = discriminator(Dis_input_src,fake_tgt,"target",True)
Dis_fake_src = discriminator(Dis_input_tgt,fake_src,"source",True)
## Building GAN ##
Dis_tgt_loss = discriminator_loss(Dis_real_tgt,Dis_fake_tgt)
Dis_src_loss = discriminator_loss(Dis_real_src,Dis_fake_src)
Dis_loss = Dis_tgt_loss + Dis_src_loss
G_loss = generator_loss(Dis_fake_src,Dis_fake_tgt)
bins = np.arange(0, 32, 1,dtype=np.float32)
if config.similarity_loss == 'cc' or config.similarity_loss == 'CC':
similarity = cc3D(fake_tgt, tgt) + cc3D(fake_src, src)
if config.similarity_loss == 'mi' or config.similarity_loss == 'MI':
similarity = MI(fake_tgt, tgt, bins) + MI(fake_src, src, bins)
if config.cyc_loss == 'on':
Cyc_loss = Cyclic_loss(src_cyc, tgt_cyc, G_net.src, G_net.tgt, config.ssim_loss)
if config.flow_loss == 'on':
flow_loss = flow_dist_loss(diff, Flow)
if config.flow_loss == 'on':
total_loss = 0.01 * G_loss + similarity + Cyc_loss + flow_loss
else:
total_loss = 0.01 * G_loss + similarity + Cyc_loss
Dis_optimizer = tf.train.GradientDescentOptimizer(0.00002).minimize(Dis_loss)
G_optimizer = tf.train.AdamOptimizer(0.0001, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(total_loss)
init = tf.global_variables_initializer()
sess = tf.Session(config=configurnet)
sess.run(init)
writer = tf.summary.FileWriter(model_dir)
model_saver = tf.train.Saver(max_to_keep=None)
start = config.iteration_start
iteration = int(config.Number_of_patches / batch_size)
if start > 0:
if start > iteration:
step_st = start - np.int((start / iteration)) * iteration
paris_st = np.int(start / np.float(iteration))
else:
step_st = start
#total_pairs = len(train_patch_pairs)*(len(train_patch_pairs)-1)
x = np.arange(len(training_data))
total_pairs = list(permutations(x, 2))
random.shuffle(total_pairs)
for pairs in total_pairs:
for i in range(4):
if config.flow_loss == 'off':
data_file = h5py.File(config.base_directory + "/train/"+training_data[pairs[0]]+"/patch_pair_{0}.h5".format(i),"r")['moving']
src_im = data_file[0]
data_file = h5py.File(config.base_directory + "/train/"+training_data[pairs[1]]+"/patch_pair_{0}.h5".format(i),"r")['moving']
tgt_im = data_file[0]
del data_file
print ("{0} Patches are selected".format(config.Number_of_patches))
s = 0
for step in range(len(src_im)):
src_patch = src_im[step]
tgt_patch = tgt_im[step]
d_tgt, d_src, _ = sess.run([Dis_tgt_loss, Dis_src_loss, Dis_optimizer], feed_dict={src: src_patch, tgt: tgt_patch, Dis_input_tgt: tgt_patch,
Dis_input_src: src_patch})
if config.flow_loss == 'on':
flow_label = np.reshape([flow[0][step],flow[1][step],flow[2][step],flow[3][step], flow[4][step], flow[5][step]],
(batch_size, config.patch_size[0],config.patch_size[1], config.patch_size[2], 6))
t_loss, g_loss, cyc_loss, flow_los, _ = sess.run([total_loss, G_loss, Cyc_loss, flow_loss , G_optimizer],
feed_dict={src: src_patch, tgt: tgt_patch, Dis_input_tgt:tgt_patch, Dis_input_src:src_patch, diff: flow_label})
train_loss = np.double([t_loss, g_loss, cyc_loss, d_tgt, d_src, flow_los])
else:
t_loss, g_loss, cyc_loss, _ = sess.run([total_loss, G_loss, Cyc_loss, G_optimizer],
feed_dict={src: src_patch, tgt: tgt_patch,
Dis_input_tgt: tgt_patch,
Dis_input_src: src_patch})
train_loss = np.double([t_loss, g_loss, cyc_loss, d_tgt, d_src, 0.0])
flow_los = 0.0
message = "Start:{0} Paris :{1} vs {2}, Step :{3} t_Loss:{4} G_loss: {5} Cyc_loss:{6} D_tgt:{7} D_src:{8} Flow loss:{9} \n"\
.format(start, training_data[pairs[0]], training_data[pairs[1]], step, t_loss, g_loss, cyc_loss,d_tgt,d_src, flow_los)
print (message)
model_saving_dir = model_dir+"/models"
if not os.path.isdir(model_saving_dir):
os.mkdir(model_saving_dir)
model_saving_name = model_dir.split('/')[-1]
if start % config.Model_saver == 0:
if start == 0:
model_saver.save(sess,model_saving_dir+'/'+model_saving_name, global_step=start)
else:
model_saver.save(sess, model_saving_dir+'/'+model_saving_name, global_step=start)
if start % 10== 0:
write_summary(start, sess, train_loss, model_dir)
s = s + batch_size
start = start + 1
src_im = None
tgt_im = None
if config.flow_loss == 'on':
flow = None
def ApplyValidation(validation_data,session, model_dir, config):
target_image = nib.load(validation_data[2]).get_data()
patchEx = PatchUtility(config.patch_size,target_image.shape, 0.5, patches=[], image=target_image)
target_patches = patchEx.extract_patches()
model_name = model_dir.split('/')[-2]
saver = tf.train.import_meta_graph(model_dir+'/'+model_name+"-0.meta")
saver.restore(session, tf.train.latest_checkpoint(model_dir))
src_place = session.graph.get_tensor_by_name("source:0")
tgt_place = session.graph.get_tensor_by_name("target:0")
f_im = session.graph.get_tensor_by_name('Generator/Forward_im:0')
i_im = session.graph.get_tensor_by_name('Generator/Inverse_im:0')
cc = 0
mi = 0
for j in range(len(validation_data)-1):
src_im = nib.load(validation_data[j]).get_data()
patchEx = PatchUtility(config.patch_size, src_im.shape, 0.5, patches=[], image=src_im)
src_im = patchEx.extract_patches()
warped_patches =[]
for k in range(len(src_im)):
src = src_im[k,:, :, :]
src = np.reshape(src, (1, config.patch_size[0], config.patch_size[1], config.patch_size[2], 1))
tgt = target_patches[k, :, :, :]
tgt = np.reshape(tgt, (1, config.patch_size[0], config.patch_size[1], config.patch_size[2], 1))
f_image, i_image = session.run([f_im,i_im],feed_dict={src_place: src, tgt_place: tgt})
f_image = np.reshape(f_image, config.patch_size)
warped_patches.append(f_image)
warped_patches = list2array(warped_patches)
combiner = PatchUtility(config.patch_size, (256,256,96), 0.5, patches=warped_patches, image=[])
registered_image = combiner.combine_patches()
cc += volume_cross(registered_image,target_image)
mi += mutual_info(registered_image,target_image,30)
cc = cc /2
mi = mi /2
return cc, mi
if __name__ == "__main__":
if (len(sys.argv) != 2):
print ("Configuration file name is required")
else:
train(sys.argv[1])