Skip to content

Latest commit

 

History

History
247 lines (176 loc) · 6.62 KB

extensions.md

File metadata and controls

247 lines (176 loc) · 6.62 KB

Extend Library

Add Retriever

Retrievers inherit from the abstract Retriever class and thus needs to follow this structure:

from models.retrievers.retriever import Retriever

class NewRetriever(Retriever):
  def __init__(self, model_name=None):
    self.model_name = 'new_retriever'

  @abstractmethod
  def __call__(self, kwargs):
    # model inference e.g. return model(**kwargs)
    pass

  @abstractmethod
  def collate_fn(self, batch, query_or_doc=None):
    # implement collate_fn here
    pass 

  @abstractmethod
  def similarity_fn(self, q_embds, doc_embs):
    # similarity fn to use e.g. torch.mm.(q_embs, doc_embs.t())
    pass 

We save it under models/retrievers/new_retriever.py.

As the second step create a config for this model under config/retrievers/new_retriever.yaml.

init_args: 
  _target_: models.retrievers.new_retriever.NewRetriever
  model_name: "new_retriever"
batch_size: 1024
batch_size_sim: 256

To use the model add the argument retriever='new_retriever':

python3 main.py retriever='new_retriever'

Add Reranker

Rerankers inherit from the abstract Reranker class and thus needs to follow this structure:

from models.rerankers.reranker import Reranker

class NewReranker(Reranker):
  def __init__(self, model_name=None):
    self.model_name = 'new_reranker'

  @abstractmethod
  def __call__(self, kwargs):
    # model inference e.g. self.model(**kwargs)
    pass

  @abstractmethod
  def collate_fn(self, batch, query_or_doc=None):
    # implement collate function 
    pass

We save it under models/rerankers/new_reranker.py.

As the second step create a config for this model under config/rerankers/new_reranker.yaml.

init_args: 
  _target_: models.rerankers.new_reranker.NewReranker
  model_name: "new_reranker"
batch_size: 2048

To use the model add the argument reranker='new_reranker':

python3 main.py reranker='new_reranker'

Add Generator

The Generator inherits from the abstract Generator class and thus needs to follow this structure:

from models.generators.generator import Generator

class NewGenerator(Generator):
  def __init__(self, model_name=None):
    self.model_name = 'new_generator'

  @abstractmethod
  def generate(self, inp):
    # generation e.g. self.model(**inp)
    pass
  @abstractmethod
  def collate_fn(self, inp):
    pass

  # only required for training
  @abstractmethod
  def prediction_step(self, model, model_input, label_ids=None):
      # e.g.       
      # output = model(**model_input, labels=label_ids)
      # return output.logits, output.loss
      pass 

We save it under models/generators/new_generator.py.

As the second step create a config for this model under config/generators/new_generator.yaml.

defaults:
  - prompt: basic
init_args: 
  _target_: models.generators.new_generator.NewGenerator
  model_name: "new_generator"
  max_new_tokens: 128
batch_size: 32
max_inp_length: null

To use the model add the argument generator='new_generator':

python3 main.py generator='new_generator'

Add Dataset

A dataset config contains two entries: doc for the collection and query for the queries.

A query dataset must contain the fields id, wikipedia_id (optional), content, label after the processing.

A document dataset must contain the fields id, and content after the processing.

Define a new dataset class in modules/dataset_processor.py

class NewDataset(Processor):

  def __init__(self, *args, **kwargs):
    # name under which the dataset will be saved 'datasets/new_dataset_{split}' (default)
    dataset_name = 'new_dataset'
    super().__init__(*args, **kwargs, dataset_name = dataset_name)

  def process(self):
    # load model 
    # e.g. for hf hub 
    #dataset = datasets.load_dataset('hf_dataset_name')
    def map_fn(example):
      # do some mapping
      return example

    dataset = dataset.map(map_fn, num_proc=self.num_proc)
    return dataset

To use the dataset add a new dataset config e.g. config/dataset/new_config.yaml using the new class NewDataset for the collection (doc field). As a query we are using an already existing Dataset KILTNQProcessor. Additinally, add the field split which defines which split within the dataset should be used.

test:
    doc: null
    query: null
dev:
  doc: 
    init_args:
    _target_: modules.dataset_processor.NewDataset
    split: "full"
query:
  init_args:
    _target_: modules.dataset_processor.KILTNQProcessor
    split: "validation"
train:
    doc: null
    query: null

All datasets can be overwritten by adding +overwrite_datasets=True as an argument (Caution: This might overwrite collections that take long long to encode). In case the indexing is interrupted you can continue encoding a collection from batch 1000 by additionally using the argument +continue_batch=1000.

Add Prompt

Prompts are stored in config/prompt/ via the argument prompt.

Create a new prompt new_prompt under config/prompt/new_prompt.yaml An exmaple prompt could look like this. THE local variables (e.g. query) will insterted into the formatted string within the respective models' format_instruction() function. Important: empty spaces after a colon within the formatted string need to be escaped like to Question:\ .

system: "You are a helpful assistant. Your task is to extract relevant information from the provided documents and to answer questions accordingly."
user: f"Background:\ {docs}\n\nQuestion:\ {question}\nAnswer:"
system_without_docs: "You are a helpful assistant."
user_without_docs: f"Question:\ {question}\nAnswer:"

To use the prompt pass it as an argument:

python3 main.py generator='tinyllama-chat' prompt='new_prompt'

Oracle

Oracle Answer

Using the oracle answers instead of generating using a LLM.

For running the generation simply use the generator oracle_answer. For example:

python3 main.py dataset='kilt_nq' generator='oracle_answer'

Oracle Provenances

To generate all oracle runs (trec runs) and save them in runs execute the script scripts/kilt_generate_oracle.py once.

Oracle Provenances as Input to LLM

Generating answers using Llama with the oracle provenances as documents.

For running the generation with e.g. llama-2-7b-chat simply select orcale_provenance as a retriever. For example:

python3 main.py dataset='kilt_nq' retriever='oracle_provenance' generator='llama-2-7b-chat'

Testing

If you want to develop new functionalities, or want to test basic BERGEN configurations:

Run all tests:

pytest tests/