-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
276 lines (230 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# coding: utf-8
import argparse
import time
import math
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.onnx
import data
from transformer_model import next_char_transformer
parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 RNN/LSTM Language Model')
parser.add_argument('--data', type=str, default='./data/wikitext-2',
help='location of the data corpus')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--hidden_size', type=int, default=512,
help='size of word embeddings')
parser.add_argument('--n_layers', type=int, default=64,
help='number of layers')
parser.add_argument('--lr', type=float, default=0.003,
help='initial learning rate')
parser.add_argument('--momentum', type=float, default=0.99,
help='momentum for SGD')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=250,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=16, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=512,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.55,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='model.pt',
help='path to save the final model')
parser.add_argument('--onnx-export', type=str, default='',
help='path to export the final model in onnx format')
args = parser.parse_args()
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = torch.device("cuda" if args.cuda else "cpu")
###############################################################################
# Load data
###############################################################################
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# corpus = data.Corpus(args.data)
import os
import hashlib
fn = 'corpus.{}.data'.format(hashlib.md5(args.data.encode()).hexdigest())
if os.path.exists(fn):
print('Loading cached dataset...')
corpus = torch.load(fn)
else:
print('Producing dataset...')
corpus = data.Corpus(args.data)
torch.save(corpus, fn)
# Starting from sequential data, batchify arranges the dataset into columns.
# For instance, with the alphabet as the sequence and batch size 4, we'd get
# ┌ a g m s ┐
# │ b h n t │
# │ c i o u │
# │ d j p v │
# │ e k q w │
# └ f l r x ┘.
# These columns are treated as independent by the model, which means that the
# dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient
# batch processing.
def batchify(data, batch_size):
# Work out how cleanly we can divide the dataset into batch_size parts.
nbatch = data.size(0) // batch_size
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * batch_size)
# Evenly divide the data across the batch_size batches.
data = data.view(batch_size, -1).t().contiguous()
return data.to(device)
eval_batch_size = args.batch_size
test_batch_size = 1
pad = 100000
train_data = batchify(corpus.train, args.batch_size)
val_data = batchify(corpus.valid, eval_batch_size)
test_data = batchify(corpus.test, test_batch_size)
###############################################################################
# Build the model
###############################################################################
vocab_size = len(corpus.dictionary)
model = next_char_transformer(vocab_size, hidden_size=args.hidden_size, n_layers=args.n_layers,
dropout=args.dropout, tied=args.tied, max_sequence_len=args.bptt,
intermediate_losses=True).to(device)
###############################################################################
# Training code
###############################################################################
# mask subsequent entries
def subsequent_mask(size):
"""Mask out subsequent positions."""
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def make_std_mask(tgt):
"""Create a mask to hide padding and future words."""
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask)
return tgt_mask
# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM.
def get_batch(source, i, train):
if train:
i = torch.randint(low=0, high=(len(source) - args.bptt), size=(1,)).long().item()
seq_len = args.bptt
target = source[i + 1:i + 1 + seq_len].t()
else:
seq_len = min(args.bptt, len(source) - 1 - i)
target = source[i + seq_len, :]
data = source[i:i + seq_len].t()
data_mask = (data != pad).unsqueeze(-2)
target_mask = make_std_mask(data.long())
# reshape target to match what cross_entropy expects
target = target.contiguous().view(-1)
return data, target, data_mask, target_mask
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
total_loss = AverageMeter()
model.eval()
ntokens = len(corpus.dictionary)
step = 1
with torch.no_grad():
for batch, i in enumerate(range(0, data_source.size(0) - 1 - args.bptt, step)):
data, target, data_mask, target_mask = get_batch(data_source, i, train=False)
output = model(data, target_mask)
_, last_loss = model.criterion(output, target)
total_loss.update(last_loss.item(), data.size(0))
return total_loss.avg
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = AverageMeter()
start_time = time.time()
ntokens = len(corpus.dictionary)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, target, data_mask, target_mask = get_batch(train_data, i, train=True)
model.zero_grad()
output = model(data, target_mask)
loss, last_loss = model.criterion(output, target)
loss.backward()
optimizer.step()
total_loss.update(last_loss.item(), data.size(0))
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss.avg
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f} | bpc {:8.3f}'.format(
epoch, batch, len(train_data) // args.bptt,
elapsed * 1000 / args.log_interval, cur_loss,
math.exp(cur_loss), cur_loss / math.log(2)))
total_loss.reset()
start_time = time.time()
if batch % 10000 == 0 and batch > 0:
break
return total_loss.avg
# Loop over epochs.
best_val_loss = None
optimizer = optim.SGD(model.parameters(), args.lr, args.momentum)
num_params = 0
for p in model.parameters():
num_params += p.numel()
print('Number of parameters: {}'.format(num_params))
# At any point you can hit Ctrl + C to break out of training early.
try:
for epoch in range(1, args.epochs + 1):
epoch_start_time = time.time()
train_loss = train()
print('| end of epoch {:3d} | time: {:5.2f}s | train loss {:5.2f} | '
'train ppl {:8.2f} | train bpc {:8.3f}'.format(epoch, (time.time() - epoch_start_time),
train_loss, math.exp(train_loss), train_loss / math.log(2)))
val_loss = evaluate(val_data)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f} | valid bpc {:8.3f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss), val_loss / math.log(2)))
print('-' * 89)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss:
with open(args.save, 'wb') as f:
torch.save(model, f)
best_val_loss = val_loss
model.update(epoch // args.epochs)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(args.save, 'rb') as f:
model = torch.load(f)
# Run on test data.
test_loss = evaluate(test_data)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 89)