-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathppde_RoughVol_call.py
271 lines (230 loc) · 9.09 KB
/
ppde_RoughVol_call.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch
import torch.nn as nn
import numpy as np
import argparse
import tqdm
import os
import math
import pandas as pd
import matplotlib.pyplot as plt
from lib.bsde import PPDE_RoughVol as PPDE
from lib.options import EuropeanCall
def sample_x0(batch_size, device):
sigma = 0.3
mu = 0.08
tau = 0.1
z = torch.randn(batch_size, 1, device=device)
s0 = torch.exp((mu-0.5*sigma**2)*tau + 0.3*math.sqrt(tau)*z) # lognormal
s0 = torch.ones(batch_size,1, device=device)
v0 = torch.ones_like(s0) * 0.04
x0 = torch.cat([s0,v0],1)
return x0
def write(msg, logfile, pbar):
pbar.write(msg)
with open(logfile, "a") as f:
f.write(msg)
f.write("\n")
def train(T,
n_steps,
d,
mu,
kappa,
eta,
V_infty,
rho,
H,
depth,
rnn_hidden,
ffn_hidden,
max_updates,
batch_size,
lag,
base_dir,
device,
method,
continuous
):
logfile = os.path.join(base_dir, "log.txt")
ts = torch.linspace(0,T,n_steps+1, device=device)
ppde = PPDE(mu=mu, kappa=kappa, V_infty=V_infty, eta=eta, rho=rho, H=H,
depth=depth, rnn_hidden=rnn_hidden, ffn_hidden=ffn_hidden,
continuous_approx=continuous)
ppde.to(device)
optimizer = torch.optim.RMSprop(ppde.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[1000,2000], gamma=0.5)
pbar = tqdm.tqdm(total=max_updates)
losses = []
for idx in range(max_updates):
optimizer.zero_grad()
x0 = sample_x0(batch_size, device)
if method=="bsde":
loss, _, _ = ppde.fbsdeint_parametric(ts=ts, x0=x0, lag=lag)
#else:
# loss, _, _ = ppde.conditional_expectation(ts=ts, x0=x0, option=lookback, lag=lag)
loss.backward()
optimizer.step()
losses.append(loss.cpu().item())
# testing
if (idx+1)%20 == 0:
with torch.no_grad():
x0 = torch.ones(5000,d,device=device) # we do monte carlo
x0[:,1] = x0[:,1]*0.04
loss, Y, payoff = ppde.fbsdeint_parametric(ts=ts,x0=x0,lag=lag, K=1)
payoff = torch.exp(-mu*ts[-1])*payoff.mean()
write("loss={:.4f}, Monte Carlo price={:.4f}, predicted={:.4f}".format(loss.item(),payoff.item(), Y[0,0,0].item()),logfile,pbar)
pbar.update(1)
# save results
result = {"f":ppde.f.state_dict(),
"dfdx":ppde.dfdx.state_dict(),
"loss":losses}
torch.save(result, os.path.join(base_dir, "result.pth.tar"))
# make plots
evaluate(**locals())
def evaluate(T,
n_steps,
d,
mu,
kappa,
eta,
V_infty,
rho,
H,
depth,
rnn_hidden,
ffn_hidden,
lag,
base_dir,
device,
continuous,
**kwargs
):
logfile = os.path.join(base_dir, "log.txt")
ts = torch.linspace(0,T,n_steps+1, device=device)
ppde = PPDE(mu=mu, kappa=kappa, V_infty=V_infty, eta=eta, rho=rho, H=H,
depth=depth, rnn_hidden=rnn_hidden, ffn_hidden=ffn_hidden,
continuous_approx=continuous)
ppde.to(device)
state = torch.load(os.path.join(base_dir, "result.pth.tar"), map_location=device)
ppde.f.load_state_dict(state["f"])
ppde.dfdx.load_state_dict(state["dfdx"])
# make plots
# 1) Option price at t=0
price_mc, price_pred = [], []
for K in np.linspace(0.9,1.1,11):
with torch.no_grad():
x0=torch.ones(10000,2,device=device)
x0[:,1] = x0[:,1]*0.04
loss, Y, payoff = ppde.fbsdeint_parametric(ts=ts,x0=x0,lag=lag,K=K)
payoff = torch.exp(-mu*ts[-1])*payoff.mean()
price_mc.append(payoff.item())
price_pred.append(Y[0,0,0].item())
df = pd.DataFrame({'K':np.linspace(0.9,1.1,11),
'price_mc':price_mc,
'price_pred':price_pred})
df.to_csv(os.path.join(base_dir, "df.csv"))
# 2) approximation of PPDE solution along a path
for paths in range(10):
print("path {}".format(paths))
x0 = torch.ones(1,d,device=device)#sample_x0(1, d, device)
x0[:,1] = x0[:,1]*0.04
with torch.no_grad():
x, _ = ppde.sdeint(ts=ts, x0=x0)
fig = plt.figure(figsize=(12,5))
spec = fig.add_gridspec(2,2)
ax0 = fig.add_subplot(spec[:,0])
ax0.plot(ts.cpu().numpy(), x[0,:,0].cpu().numpy())
ax0.set_ylabel(r"$S(t)$")
for idlag, lag_eval in enumerate([lag//2, lag]):
price_pred, price_mc = [], []
for idx, t in enumerate(ts[::lag_eval]):
price_pred.append(ppde.eval(ts=ts, x=x[:,:(idx*lag_eval)+1,:], lag=lag_eval, K=1).detach())
option = EuropeanCall(K=1)
price_mc.append(ppde.eval_mc(ts=ts, x=x[:,:(idx*lag_eval)+1,:], lag=lag_eval, option=option, mc_samples=10000))
price_pred = torch.cat(price_pred, 0).view(-1).cpu().numpy()
price_mc = torch.cat(price_mc, 0).view(-1).cpu().numpy()
ax = fig.add_subplot(spec[idlag, 1])
ax.plot(ts[::lag_eval].cpu().numpy(), price_pred, '--', label="Deep Learning price")
ax.plot(ts[::lag_eval].cpu().numpy(), price_mc, '-', label="Monte Carlo price")
ax.set_ylabel(r"$v(t,X_t)$")
ax.set_title("Lag {}".format(lag_eval))
ax.legend()
fig.tight_layout()
fig.savefig(os.path.join(base_dir, "RoughVol_path{}.pdf".format(paths)))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default='./numerical_results/', type=str)
parser.add_argument('--device', default=0, type=int)
parser.add_argument('--use_cuda', action='store_true', default=False)
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--batch_size', default=500, type=int)
parser.add_argument('--d', default=2, type=int)
parser.add_argument('--max_updates', default=5000, type=int)
parser.add_argument('--ffn_hidden', default=[20,10], nargs="+", type=int)
parser.add_argument('--rnn_hidden', default=20, type=int)
parser.add_argument('--depth', default=3, type=int)
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--n_steps', default=100, type=int, help="number of steps in time discrretisation")
parser.add_argument('--lag', default=10, type=int, help="lag in fine time discretisation to create coarse time discretisation")
parser.add_argument('--mu', default=0.05, type=float, help="risk free rate")
parser.add_argument('--kappa', default=0.5, type=float, help="mean reverting process coef")
parser.add_argument('--V_infty', default=0.1, type=float, help="target variance")
parser.add_argument('--eta', default=0.8, type=float, help="coef diff vol")
parser.add_argument('--H', default=0.25, type=float, help="Hurst parameter")
parser.add_argument('--rho', default=0., type=float, help="correlation brownian motions")
parser.add_argument('--method', default="bsde", type=str, help="learning method", choices=["bsde","orthogonal"])
parser.add_argument('--continuous', default=False, action='store_true')
parser.add_argument('--evaluate', default=False, action='store_true')
args = parser.parse_args()
assert args.d==2, "Heston implementation is for d=2"
if torch.cuda.is_available() and args.use_cuda:
device = "cuda:{}".format(args.device)
else:
device="cpu"
if args.continuous:
results_path = os.path.join(args.base_dir, "RoughVol", args.method, 'signature')
else:
results_path = os.path.join(args.base_dir, "RoughVol", args.method, 'discrete')
if not os.path.exists(results_path):
os.makedirs(results_path)
if args.evaluate:
evaluate(T=args.T,
n_steps=args.n_steps,
d=args.d,
mu=args.mu,
kappa=args.kappa,
V_infty=args.V_infty,
eta=args.eta,
rho=args.rho,
H=args.H,
depth=args.depth,
rnn_hidden=args.rnn_hidden,
ffn_hidden=args.ffn_hidden,
max_updates=args.max_updates,
batch_size=args.batch_size,
lag=args.lag,
base_dir=results_path,
device=device,
method=args.method,
continuous=args.continuous
)
else:
train(T=args.T,
n_steps=args.n_steps,
d=args.d,
mu=args.mu,
kappa=args.kappa,
V_infty=args.V_infty,
eta=args.eta,
rho=args.rho,
H=args.H,
depth=args.depth,
rnn_hidden=args.rnn_hidden,
ffn_hidden=args.ffn_hidden,
max_updates=args.max_updates,
batch_size=args.batch_size,
lag=args.lag,
base_dir=results_path,
device=device,
method=args.method,
continuous=args.continuous
)