forked from Sykarius/PRL-Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_nostack.py
165 lines (120 loc) · 5 KB
/
train_nostack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from models import Model3
import torch.nn as nn
from tqdm import tqdm
import argparse
from torch.optim import Adam
import os
import logging
import pickle
# Training models that take stacked input
parser = argparse.ArgumentParser(
description=""" python train_nostack.py --epochs | -e [num (def 20)] --batchs | -b [num (def 32)] --learning_rate | -lr [float (def 0.0001)] --ckpt | -c [str]""")
parser.add_argument('--epochs', '-e', type=int,
default=20, help='No of epochs')
parser.add_argument('--batchs', '-b', type=int,
default=32, help='Batch size')
parser.add_argument('--learning_rate', '-lr', type=float,
default=0.0001, help='Learning Rate')
parser.add_argument('--ckpt', '-c', type=str,
default=None, help='Checkpoint Name')
def training(model, opt, params):
batch_size = params['batch_size']
epochs = params['epochs']
global idx
loss_func = nn.CrossEntropyLoss(
torch.tensor([0.2, 2.5, 1., 1.]).to(device))
frame_dir = './frames/nostack/'
game_dirs = [frame_dir + x + '/' for x in os.listdir(frame_dir)]
game_frames = dict()
game_action = dict()
for g in game_dirs:
game_frames[g] = []
game_action[g] = []
for f in os.listdir(g):
game_frames[g].append(g+f)
game_action[g].append(int(f.rstrip('.pkl').split('_')[1]))
loss_run = 0
with tqdm(range(epochs), desc='Training', unit='epochs') as erange:
for e in erange:
erange.set_postfix({'Epoch': e+1, 'Game': 0, 'loss': loss_run})
logger.info(f'Start Epoch {e}')
for g in game_dirs:
end = len(game_frames[g])
i = 0
loss_run = 0
hidden = model.init_hidden(device)
bno = 1
while i+batch_size < end:
curb = []
opt.zero_grad()
erange.set_postfix(
{'Epoch': e+1, 'Game': g[-2:], 'Batch': bno, 'loss': loss_run})
for f in game_frames[g][i: i+batch_size]:
with open(f, 'rb') as f:
curb.append(pickle.load(f).unsqueeze(0))
batch_frames = torch.cat(curb, dim=0).type(
torch.FloatTensor).to(device)
actions = torch.tensor(
game_action[g][i: i+batch_size]).to(device)
pred_actions, hidden = model(batch_frames, hidden)
loss = loss_func(pred_actions, actions)
loss.backward()
opt.step()
hidden = (hidden[0].detach(), hidden[1].detach()) # TBTT
with torch.no_grad():
loss_run += (loss.to(device_cpu).item() - loss_run)/bno
i += batch_size
bno += 1
if (e+1) % 10 == 0:
saved_dict = {'model': model.state_dict(),
'opt': opt.state_dict()}
torch.save(saved_dict, ckpt_path + 'ckpt_' + str(idx) + '.pt')
logger.info(f'Checkpointing ckpt_{str(idx)}')
idx += 1
logger.info(f'Completed Epoch {e}')
if __name__ == '__main__':
args = parser.parse_args()
model_name = 'model3'
epochs = args.epochs
batch_size = args.batchs
lr = args.learning_rate
ckpt = args.ckpt
ckpt_path = 'saved/' + model_name + '/'
ckpt_ids = sorted([x.replace('.pt', '').split('_')[1]
for x in os.listdir(ckpt_path)])
if not len(ckpt_ids):
idx = 0
else:
idx = int(ckpt_ids[-1])+1
logger = logging.getLogger('training-nostack')
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter(
'%(asctime)s :: %(name)s :: %(levelname)s :: %(message)s', datefmt='%d-%m-%Y %H:%M:%S')
file_handler = logging.FileHandler(
os.path.join('logs/', 'training.log'))
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.info(f'Training Session for {model_name}')
device_cpu = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = device_cpu
params = dict()
params['batch_size'] = batch_size
params['epochs'] = epochs
model = Model3().to(device)
opt = Adam(model.parameters(), lr)
if ckpt is not None and os.path.exists(ckpt_path + ckpt + '.pt'):
with open(ckpt_path + ckpt + '.pt', 'rb') as f:
saved_dict = torch.load(f)
model.load_state_dict(saved_dict['model'])
opt.load_state_dict(saved_dict['opt'])
logger.info(f'Loaded {ckpt}')
# Start Training
training(model, opt, params)
logger.info('Training session complete')
saved_dict = {'model': model.state_dict(), 'opt': opt.state_dict()}
torch.save(saved_dict, ckpt_path + 'ckpt_' + str(idx) + '.pt')
logger.info(f'Saved to ckpt ckpt_{str(idx)}')