-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsample_train.py
213 lines (198 loc) · 11.5 KB
/
sample_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torch.optim as optim
import timm
from tqdm import tqdm
import time
from datasets.cct20 import get_cct20
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
img_size = 256 # may need to change to 224 for certain models
trainset, testset_cis, testset_true = get_cct20(img_size)
num_classes = len(set(trainset.labels)) # 16
models = ['Resnet50', 'AlexNet', 'VGG13BN', 'PNASnet5', 'Resnet152', 'MobileNetV3Small'] # See below for additional models
pretrained = True
opt = 'adamw' # ['adamw', 'sgd']
scheduler = 'cosine' # ['cosine', 'step']
if opt == 'sgd':
lrs = [1e-1, 1e-2, 1e-3, 1e-4]
elif opt == 'adamw':
lrs = [1e-2, 1e-3, 1e-4, 1e-5]
wds = [1e-3, 1e-4, 1e-5, 1e-6, 0]
for model_name in models:
grid_cis = []
grid_test = []
for lr_init in lrs:
for wd in wds:
print(model_name)
start = time.time()
if model_name == 'Resnet152':
net = torchvision.models.resnet152(pretrained=pretrained)
net.fc = nn.Linear(net.fc.in_features, num_classes)
elif model_name =='Resnet50':
net = torchvision.models.resnet50(pretrained=pretrained)
net.fc = nn.Linear(net.fc.in_features, num_classes)
elif model_name == 'PNASnet5':
net = timm.create_model('pnasnet5large', pretrained=pretrained, num_classes=num_classes)
elif model_name =='VGG13BN':
net = torchvision.models.vgg13_bn(pretrained=pretrained)
net.classifier[-1] = nn.Linear(net.classifier[-1].in_features, num_classes)
elif model_name =='MobileNetV3Small':
net = torchvision.models.mobilenet_v3_small(pretrained=pretrained)
net.classifier[-1] = nn.Linear(net.classifier[-1].in_features, num_classes)
elif model_name =='AlexNet':
net = torchvision.models.alexnet(pretrained=pretrained)
net.classifier[-1] = nn.Linear(net.classifier[-1].in_features, num_classes)
elif model_name =='DeiT-tiny':
net = timm.create_model('deit_tiny_patch16_224', pretrained=pretrained, num_classes=num_classes)
elif model_name =='DeiT-small':
net = timm.create_model('deit_small_patch16_224', pretrained=pretrained, num_classes=num_classes)
elif model_name == 'InceptionResnetv2':
net = timm.create_model('inception_resnet_v2', pretrained=pretrained, num_classes=num_classes)
elif model_name == 'VGG16BN':
net = torchvision.models.vgg16_bn(pretrained=pretrained)
net.classifier[-1] = nn.Linear(net.classifier[-1].in_features, num_classes)
elif model_name == 'EfficientNetB0':
net = timm.create_model('efficientnet_b0', pretrained=pretrained, num_classes=num_classes)
elif model_name == 'EfficientNetB4':
net = timm.create_model('efficientnet_b4', pretrained=pretrained, num_classes=num_classes)
elif model_name == 'ConvNext-tiny':
net = timm.create_model('convnext_tiny', pretrained=pretrained, num_classes=num_classes)
elif model_name == 'DenseNet121':
net = torchvision.models.densenet121(pretrained=pretrained)
net.classifier = nn.Linear(net.classifier.in_features, num_classes)
elif model_name == 'ResNext50-32x4d':
net = torchvision.models.resnext50_32x4d(pretrained=pretrained)
net.fc = nn.Linear(net.fc.in_features, num_classes)
elif model_name == 'ShuffleNetv2':
net = torchvision.models.shufflenet_v2_x1_0(pretrained=pretrained)
net.fc = nn.Linear(net.fc.in_features, num_classes)
elif model_name == 'SqueezeNet':
net = torchvision.models.squeezenet1_1(pretrained=pretrained)
net.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
elif model_name == 'SqueezeNetLin':
net = torchvision.models.squeezenet1_1(pretrained=pretrained)
class Flatten(nn.Module):
def forward(self, x): return x.view(x.size(0), x.size(1))
net.classifier = nn.Sequential(nn.AdaptiveAvgPool2d(output_size=(1,1)), Flatten(), nn.Linear(512, num_classes))
elif model_name == 'ShuffleNetv2_05':
net = torchvision.models.shufflenet_v2_x0_5(pretrained=pretrained)
net.fc = nn.Linear(net.fc.in_features, num_classes)
elif model_name == 'MnasNet05':
net = torchvision.models.mnasnet0_5(pretrained=pretrained)
net.classifier[-1] = nn.Linear(net.classifier[-1].in_features, num_classes)
elif model_name == "caformer_b36":
net = timm.create_model('caformer_b36.sail_in1k', pretrained=pretrained, num_classes=num_classes)
elif model_name == "swin_base":
net = timm.create_model('swin_base_patch4_window7_224.ms_in1k', pretrained=pretrained, num_classes=num_classes)
elif model_name == "mixer_b16":
net = timm.create_model('mixer_b16_224', pretrained=pretrained, num_classes=num_classes)
elif model_name == "tinynet_e":
net = timm.create_model('tinynet_e.in1k', pretrained=pretrained, num_classes=num_classes)
elif model_name == "tinynet_d":
net = timm.create_model('tinynet_d.in1k', pretrained=pretrained, num_classes=num_classes)
elif model_name == "dla46_c":
net = timm.create_model('dla46_c.in1k', pretrained=pretrained, num_classes=num_classes)
elif model_name == "dla46x_c":
net = timm.create_model('dla46x_c.in1k', pretrained=pretrained, num_classes=num_classes)
batch_size = 128
testloader_cis = torch.utils.data.DataLoader(testset_cis, batch_size=batch_size,
shuffle=False, num_workers=16)
testloader_true = torch.utils.data.DataLoader(testset_true, batch_size=batch_size,
shuffle=False, num_workers=16)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=16)
if torch.cuda.device_count() > 1:
print('Multiple GPUs')
net = nn.DataParallel(net)
net = net.to(device)
criterion = nn.CrossEntropyLoss()
epochs = 50
if pretrained:
epochs = 30
best_acc = 0
cis_best = 0
true_best = 0
if opt == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=lr_init, momentum=0.9, weight_decay=wd, nesterov=True)
elif opt == 'adamw':
optimizer = optim.AdamW(net.parameters(), lr=lr_init, weight_decay=wd/lr_init)
if scheduler == 'step':
if pretrained:
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[15, 20, 25], gamma=0.1, last_epoch=-1)
else:
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20, 30, 40], gamma=0.1, last_epoch=-1)
elif scheduler == 'cosine':
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = epochs)
for epoch in range(epochs):
print(epoch)
running_loss = 0.0
net.train()
train_correct = 0
train_total = 0
for i, data in enumerate(tqdm(trainloader), 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs).view(-1, num_classes)
_, predicted = torch.max(outputs.data, 1)
train_total += labels.size(0)
train_correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
lr_scheduler.step()
net.eval()
test_correct = 0
test_total = 0
test_loss = 0
with torch.no_grad():
for inputs, labels in testloader_cis:
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs).view(-1, num_classes)
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()
cis_acc = test_correct/test_total*100
test_correct = 0
test_total = 0
test_loss = 0
with torch.no_grad():
for inputs, labels in testloader_true:
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs).view(-1, num_classes)
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()
true_acc = test_correct/test_total*100
print("Seen locations Val")
print(cis_acc)
if cis_acc > cis_best:
cis_best = cis_acc
best_params = '_' + str(opt) + '_'+ scheduler + '_lr' + str(lr_init) + '_wd' + str(wd)
best_detail = '_epoch' + str(epoch) + '_cis' + str(int(cis_acc*100)) + '_test' + str(int(true_acc*100))
curr_model_wts = net.state_dict()
true_best = true_acc
print("Test")
print(true_acc)
print(model_name)
print("Train time (min): " + str((time.time() - start)/60))
print("LR: " + str(lr_init))
print("WD: " + str(wd))
print("CIS Best")
print(round(cis_best, 2))
print("Test")
print(round(true_best, 2))
grid_cis.append(round(cis_best, 2))
grid_test.append(round(true_best, 2))
net = net.cpu()
print(model_name)
print(np.array(grid_cis).reshape(-1, len(lrs), len(wds)))
print(np.amax(np.array(grid_cis).reshape(-1, len(lrs), len(wds))))
print(np.array(grid_test).reshape(-1, len(lrs), len(wds)))
print(np.amax(np.array(grid_test).reshape(-1, len(lrs), len(wds))))
if __name__ == "__main__":
main()